20 research outputs found

    Ear Detection under Uncontrolled Conditions with Multiple Scale Faster Region-Based Convolutional Neural Networks

    No full text
    Ear detection is an important step in ear recognition approaches. Most existing ear detection techniques are based on manually designing features or shallow learning algorithms. However, researchers found that the pose variation, occlusion, and imaging conditions provide a great challenge to the traditional ear detection methods under uncontrolled conditions. This paper proposes an efficient technique involving Multiple Scale Faster Region-based Convolutional Neural Networks (Faster R-CNN) to detect ears from 2D profile images in natural images automatically. Firstly, three regions of different scales are detected to infer the information about the ear location context within the image. Then an ear region filtering approach is proposed to extract the correct ear region and eliminate the false positives automatically. In an experiment with a test set of 200 web images (with variable photographic conditions), 98% of ears were accurately detected. Experiments were likewise conducted on the Collection J2 of University of Notre Dame Biometrics Database (UND-J2) and University of Beira Interior Ear dataset (UBEAR), which contain large occlusion, scale, and pose variations. Detection rates of 100% and 98.22%, respectively, demonstrate the effectiveness of the proposed approach

    Local and Holistic Feature Fusion for Occlusion-Robust 3D Ear Recognition

    No full text
    Occlusion over ear surfaces results in performance degradation of ear registration and recognition systems. In this paper, we propose an occlusion-resistant three-dimensional (3D) ear recognition system consisting of four primary components: (1) an ear detection component, (2) a local feature extraction and matching component, (3) a holistic matching component, and (4) a decision-level fusion algorithm. The ear detection component is implemented based on faster region-based convolutional neural networks. In the local feature extraction and matching component, a symmetric space-centered 3D shape descriptor based on the surface patch histogram of indexed shapes (SPHIS) is used to generate a set of keypoints and a feature vector for each keypoint. Then, a two-step noncooperative game theory (NGT)-based method is proposed. The proposed symmetric game-based method is effectively applied to determine a set of keypoints that satisfy the rigid constraints from initial keypoint correspondences. In the holistic matching component, a proposed variant of breed surface voxelization is used to calculate the holistic registration error. Finally, the decision-level fusion algorithm is applied to generate the final match scores. Evaluation results from experiments conducted show that the proposed method produces competitive results for partial occlusion on a dataset consisting of natural and random occlusion

    Ear Recognition Based on Gabor Features and KFDA

    No full text
    We propose an ear recognition system based on 2D ear images which includes three stages: ear enrollment, feature extraction, and ear recognition. Ear enrollment includes ear detection and ear normalization. The ear detection approach based on improved Adaboost algorithm detects the ear part under complex background using two steps: offline cascaded classifier training and online ear detection. Then Active Shape Model is applied to segment the ear part and normalize all the ear images to the same size. For its eminent characteristics in spatial local feature extraction and orientation selection, Gabor filter based ear feature extraction is presented in this paper. Kernel Fisher Discriminant Analysis (KFDA) is then applied for dimension reduction of the high-dimensional Gabor features. Finally distance based classifier is applied for ear recognition. Experimental results of ear recognition on two datasets (USTB and UND datasets) and the performance of the ear authentication system show the feasibility and effectiveness of the proposed approach

    PointNet++ and Three Layers of Features Fusion for Occlusion Three-Dimensional Ear Recognition Based on One Sample per Person

    No full text
    The ear’s relatively stable structure makes it suitable for recognition. In common identification applications, only one sample per person (OSPP) is registered in a gallery; consequently, effectively training deep-learning-based ear recognition approach is difficult. The state-of-the-art (SOA) 3D ear recognition using the OSPP approach bottlenecks when large occluding objects are close to the ear. Hence, we propose a system that combines PointNet++ and three layers of features that are capable of extracting rich identification information from a 3D ear. Our goal is to correctly recognize a 3D ear affected by a large nearby occlusion using one sample per person (OSPP) registered in a gallery. The system comprises four primary components: (1) segmentation; (2) local and local joint structural (LJS) feature extraction; (3) holistic feature extraction; and (4) fusion. We use PointNet++ for ear segmentation. For local and LJS feature extraction, we propose an LJS feature descriptor–pairwise surface patch cropped using a symmetrical hemisphere cut-structured histogram with an indexed shape (PSPHIS) descriptor. Furthermore, we propose a local and LJS matching engine based on the proposed LJS feature descriptor and SOA surface patch histogram indexed shape (SPHIS) local feature descriptor. For holistic feature extraction, we use a voxelization method for global matching. For the fusion component, we use a weighted fusion method to recognize the 3D ear. The experimental results demonstrate that the proposed system outperforms the SOA normalization-free 3D ear recognition methods using OSPP when the ear surface is influenced by a large nearby occlusion

    Corresponding keypoint constrained sparse representation threeā€dimensional ear recognition via one sample per person

    No full text
    Abstract When only one sample per person (OSPP) is registered in the gallery, it is difficult for ear recognition methods to sufficiently and effectively reduce the search range of the matching features, thus resulting in low computational efficiency and mismatch problems. A 3D ear biometric system using OSPP is proposed to solve this problem. By categorising ear images by shape and establishing the corresponding relationship between keypoints from ear images and regions (regional cluster) on the directional proposals that can be arranged to roughly face the ear image, the corresponding keypoints are obtained. Then, ear recognition is performed by combining corresponding keypoints and a multiā€keypoint descriptor sparse representation classification method. The experimental results conducted on the University of Notre Dame Collection J2 dataset yielded a rankā€1 recognition rate of 98.84%; furthermore, the time for one identification operation shared by each gallery subject was 0.047Ā ms

    Robust Ear Recognition via Nonnegative Sparse Representation of Gabor Orientation Information

    No full text
    Orientation information is critical to the accuracy of ear recognition systems. In this paper, a new feature extraction approach is investigated for ear recognition by using orientation information of Gabor wavelets. The proposed Gabor orientation feature can not only avoid too much redundancy in conventional Gabor feature but also tend to extract more precise orientation information of the ear shape contours. Then, Gabor orientation feature based nonnegative sparse representation classification (Gabor orientation + NSRC) is proposed for ear recognition. Compared with SRC in which the sparse coding coefficients can be negative, the nonnegativity of NSRC conforms to the intuitive notion of combining parts to form a whole and therefore is more consistent with the biological modeling of visual data. Additionally, the use of Gabor orientation features increases the discriminative power of NSRC. Extensive experimental results show that the proposed Gabor orientation feature based nonnegative sparse representation classification paradigm achieves much better recognition performance and is found to be more robust to challenging problems such as pose changes, illumination variations, and ear partial occlusion in real-world applications

    A Local Texture-Based Superpixel Feature Coding for Saliency Detection Combined with Global Saliency

    No full text
    Because saliency can be used as the prior knowledge of image content, saliency detection has been an active research area in image segmentation, object detection, image semantic understanding and other relevant image-based applications. In the case of saliency detection from cluster scenes, the salient object/region detected needs to not only be distinguished clearly from the background, but, preferably, to also be informative in terms of complete contour and local texture details to facilitate the successive processing. In this paper, a Local Texture-based Region Sparse Histogram (LTRSH) model is proposed for saliency detection from cluster scenes. This model uses a combination of local texture patterns and color distribution as well as contour information to encode the superpixels to characterize the local feature of image for region contrast computing. Combining the region contrast as computed with the global saliency probability, a full-resolution salient map, in which the salient object/region detected adheres more closely to its inherent feature, is obtained on the bases of the corresponding high-level saliency spatial distribution as well as on the pixel-level saliency enhancement. Quantitative comparisons with five state-of-the-art saliency detection methods on benchmark datasets are carried out, and the comparative results show that the method we propose improves the detection performance in terms of corresponding measurements

    Ear recognition from one sample per person.

    No full text
    Biometrics has the advantages of efficiency and convenience in identity authentication. As one of the most promising biometric-based methods, ear recognition has received broad attention and research. Previous studies have achieved remarkable performance with multiple samples per person (MSPP) in the gallery. However, most conventional methods are insufficient when there is only one sample per person (OSPP) available in the gallery. To solve the OSPP problem by maximizing the use of a single sample, this paper proposes a hybrid multi-keypoint descriptor sparse representation-based classification (MKD-SRC) ear recognition approach based on 2D and 3D information. Because most 3D sensors capture 3D data accessorizing the corresponding 2D data, it is sensible to use both types of information. First, the ear region is extracted from the profile. Second, keypoints are detected and described for both the 2D texture image and 3D range image. Then, the hybrid MKD-SRC algorithm is used to complete the recognition with only OSPP in the gallery. Experimental results on a benchmark dataset have demonstrated the feasibility and effectiveness of the proposed method in resolving the OSPP problem. A Rank-one recognition rate of 96.4% is achieved for a gallery of 415 subjects, and the time involved in the computation is satisfactory compared to conventional methods

    3D Ear Normalization and Recognition Based on Local Surface Variation

    No full text
    Most existing ICP (Iterative Closet Point)-based 3D ear recognition approaches resort to the coarse-to-fine ICP algorithms to match 3D ear models. With such an approach, the gallery-probe pairs are coarsely aligned based on a few local feature points and then finely matched using the original ear point cloud. However, such an approach ignores the fact that not all the points in the coarsely segmented ear data make positive contributions to recognition. As such, the coarsely segmented ear data which contains a lot of redundant and noisy data could lead to a mismatch in the recognition scenario. Additionally, the fine ICP matching can easily trap in local minima without the constraint of local features. In this paper, an efficient and fully automatic 3D ear recognition system is proposed to address these issues. The system describes the 3D ear surface with a local featureā€”the Local Surface Variation (LSV), which is responsive to the concave and convex areas of the surface. Instead of being used to extract discrete key points, the LSV descriptor is utilized to eliminate redundancy flat non-ear data and get normalized and refined ear data. At the stage of recognition, only one-step modified iterative closest points using local surface variation (ICP-LSV) algorithm is proposed, which provides additional local feature information to the procedure of ear recognition to enhance both the matching accuracy and computational efficiency. On an InterĀ®XeonĀ®W3550, 3.07 GHz work station (DELL T3500, Beijing, China), the authors were able to extract features from a probe ear in 2.32 s match the ear with a gallery ear in 0.10 s using the method outlined in this paper. The proposed algorithm achieves rank-one recognition rate of 100% on the Chinese Academy of Sciencesā€™ Institute of Automation 3D Face database (CASIA-3D FaceV1, CASIA, Beijing, China, 2004) and 98.55% with 2.3% equal error rate (EER) on the Collection J2 of University of Notre Dame Biometrics Database (UND-J2, University of Notre Dame, South Bend, IN, USA, between 2003 and 2005)
    corecore