173 research outputs found

    Multi-label Few-shot ICD Coding as Autoregressive Generation with Prompt

    Full text link
    Automatic International Classification of Diseases (ICD) coding aims to assign multiple ICD codes to a medical note with an average of 3,000+ tokens. This task is challenging due to the high-dimensional space of multi-label assignment (155,000+ ICD code candidates) and the long-tail challenge - Many ICD codes are infrequently assigned yet infrequent ICD codes are important clinically. This study addresses the long-tail challenge by transforming this multi-label classification task into an autoregressive generation task. Specifically, we first introduce a novel pretraining objective to generate free text diagnoses and procedure using the SOAP structure, the medical logic physicians use for note documentation. Second, instead of directly predicting the high dimensional space of ICD codes, our model generates the lower dimension of text descriptions, which then infer ICD codes. Third, we designed a novel prompt template for multi-label classification. We evaluate our Generation with Prompt model with the benchmark of all code assignment (MIMIC-III-full) and few shot ICD code assignment evaluation benchmark (MIMIC-III-few). Experiments on MIMIC-III-few show that our model performs with a marco F1 30.2, which substantially outperforms the previous MIMIC-III-full SOTA model (marco F1 4.3) and the model specifically designed for few/zero shot setting (marco F1 18.7). Finally, we design a novel ensemble learner, a cross attention reranker with prompts, to integrate previous SOTA and our best few-shot coding predictions. Experiments on MIMIC-III-full show that our ensemble learner substantially improves both macro and micro F1, from 10.4 to 14.6 and from 58.2 to 59.1, respectively.Comment: To be appear in AAAI202

    SELF-EXPLAIN: Teaching Large Language Models to Reason Complex Questions by Themselves

    Full text link
    Large language models (LLMs) can generate intermediate reasoning steps. To elicit the reliable reasoning, the common practice is to employ few-shot chain-of-thought prompting, where several in-context demonstrations for reasoning are prepended to the question. However, such chain-of-thought examples are expensive to craft, especially for professional domains, and can have high variance depending on human annotators. Therefore, this work investigates whether LLMs can teach themselves to reason without human-crafted demonstrations. We propose SELF-EXPLAIN to generate CoT examples by LLMs inspired by "encoding specificity" in human memory retrieval. We find using self-explanations makes LLMs more confident, more calibrated and less biased when answering complex questions. Moreover, we find prompting with self-explanations can even significantly outperform using human-crafted CoTs on several complex question answering dataset.Comment: Workshop on robustness of zero/few-shot learning in foundation models @ NeurIPS 202

    UMASS_BioNLP at MEDIQA-Chat 2023: Can LLMs generate high-quality synthetic note-oriented doctor-patient conversations?

    Full text link
    This paper presents UMASS_BioNLP team participation in the MEDIQA-Chat 2023 shared task for Task-A and Task-C. We focus especially on Task-C and propose a novel LLMs cooperation system named a doctor-patient loop to generate high-quality conversation data sets. The experiment results demonstrate that our approaches yield reasonable performance as evaluated by automatic metrics such as ROUGE, medical concept recall, BLEU, and Self-BLEU. Furthermore, we conducted a comparative analysis between our proposed method and ChatGPT and GPT-4. This analysis also investigates the potential of utilizing cooperation LLMs to generate high-quality datasets

    Sigma Protocols from Verifiable Secret Sharing and Their Applications

    Get PDF
    Sigma protocols are one of the most common and efficient zero-knowledge proofs (ZKPs). Over the decades, a large number of Sigma protocols are proposed, yet few works pay attention to the common design principal. In this work, we propose a generic framework of Sigma protocols for algebraic statements from verifiable secret sharing (VSS) schemes. Our framework provides a general and unified approach to understanding Sigma protocols. It not only neatly explains the classic protocols such as Schnorr, Guillou–Quisquater and Okamoto protocols, but also leads to new Sigma protocols that were not previously known. Furthermore, we show an application of our framework in designing ZKPs for composite statements, which contain both algebraic and non-algebraic statements. We give a generic construction of non-interactive ZKPs for composite statements by combining Sigma protocols from VSS and ZKPs following MPC-in-the-head paradigm in a seamless way via a technique of \textit{witness sharing reusing}. Our construction has advantages of requiring no “glue” proofs for combining algebraic and non-algebraic statements. By instantiating our construction using Ligero++ (Bhadauria et al., CCS 2020) and designing an associated Sigma protocol from VSS, we obtain a concrete ZKP for composite statements which achieves a tradeoff between running time and proof size, thus resolving the open problem left by Backes et al. (PKC 2019)

    Expressive-VC: Highly Expressive Voice Conversion with Attention Fusion of Bottleneck and Perturbation Features

    Full text link
    Voice conversion for highly expressive speech is challenging. Current approaches struggle with the balancing between speaker similarity, intelligibility and expressiveness. To address this problem, we propose Expressive-VC, a novel end-to-end voice conversion framework that leverages advantages from both neural bottleneck feature (BNF) approach and information perturbation approach. Specifically, we use a BNF encoder and a Perturbed-Wav encoder to form a content extractor to learn linguistic and para-linguistic features respectively, where BNFs come from a robust pre-trained ASR model and the perturbed wave becomes speaker-irrelevant after signal perturbation. We further fuse the linguistic and para-linguistic features through an attention mechanism, where speaker-dependent prosody features are adopted as the attention query, which result from a prosody encoder with target speaker embedding and normalized pitch and energy of source speech as input. Finally the decoder consumes the integrated features and the speaker-dependent prosody feature to generate the converted speech. Experiments demonstrate that Expressive-VC is superior to several state-of-the-art systems, achieving both high expressiveness captured from the source speech and high speaker similarity with the target speaker; meanwhile intelligibility is well maintained

    Striking Isotopologue-Dependent Photodissociation Dynamics of Water Molecules:The Signature of an Accidental Resonance

    Get PDF
    Investigations of the photofragmentation patterns of both light and heavy water at the state-to-state level are a prerequisite for any thorough understanding of chemical processing and isotope heterogeneity in the interstellar medium. Here we reveal dynamical features of the dissociation of water molecules following excitation to the (C) over tilde (010) state using a tunable vacuum ultraviolet source in combination with the high-resolution H(D)-atom Rydberg tagging time-of-flight technique. The action spectra for forming H(D) atoms and the OH(OD) product state distributions resulting from excitation to the (C) over tilde (010) states of H2O and D2O both show striking differences, which are attributable to the effects of an isotopologue-specific accidental resonance. Such accidental-resonance-induced state mixing may contribute to the D/H isotope heterogeneity in the solar system. The present study provides an excellent example of competitive state-to-state nonadiabatic decay pathways involving at least five electronic states

    A novel machine learning-derived four-gene signature predicts STEMI and post-STEMI heart failure

    Get PDF
    High mortality and morbidity rates associated with ST-elevation myocardial infarction (STEMI) and post-STEMI heart failure (HF) necessitate proper risk stratification for coronary artery disease (CAD). A prediction model that combines specificity and convenience is highly required. This study aimed to design a monocyte-based gene assay for predicting STEMI and post-STEMI HF. A total of 1,956 monocyte expression profiles and corresponding clinical data were integrated from multiple sources. Meta-results were obtained through the weighted gene co-expression network analysis (WGCNA) and differential analysis to identify characteristic genes for STEMI. Machine learning models based on the decision tree (DT), support vector machine (SVM), and random forest (RF) algorithms were trained and validated. Five genes overlapped and were subjected to the model proposal. The discriminative performance of the DT model outperformed the other two methods. The established four-gene panel (HLA-J, CFP, STX11, and NFYC) could discriminate STEMI and HF with an area under the curve (AUC) of 0.86 or above. In the gene set enrichment analysis (GSEA), several cardiac pathogenesis pathways and cardiovascular disorder signatures showed statistically significant, concordant differences between subjects with high and low expression levels of the four-gene panel, affirming the validity of the established model. In conclusion, we have developed and validated a model that offers the hope for accurately predicting the risk of STEMI and HF, leading to optimal risk stratification and personalized management of CAD, thereby improving individual outcomes

    Comparative genomics and phylogenomics of the genus Glycyrrhiza (Fabaceae) based on chloroplast genomes

    Get PDF
    Glycyrrhiza (Fabaceae) species are rich in metabolites and widely used in medicine. Research on the chloroplast genome of Glycyrrhiza is important for understanding its phylogenetics, biogeography, genetic diversity, species identification, and medicinal properties. In this study, comparative genomics and phylogenomics of Glycyrrhiza were analyzed based on the chloroplast genome. The chloroplast genomes of six Glycyrrhiza species were obtained using various assembly and annotation tools. The final assembled chloroplast genome sizes for the six Glycyrrhiza species ranged from 126,380 bp to 129,115 bp, with a total of 109–110 genes annotated. Comparative genomics results showed that the chloroplast genomes of Glycyrrhiza showed typically lacking inverted repeat regions, and the genome length, structure, GC content, codon usage, and gene distribution were highly similar. Bioinformatics analysis revealed the presence of 69–96 simple sequence repeats and 61–138 long repeats in the chloroplast genomes. Combining the results of mVISTA and nucleotide diversity, four highly variable regions were screened for species identification and relationship studies. Selection pressure analysis indicated overall purifying selection in the chloroplast genomes of Glycyrrhiza, with a few positively selected genes potentially linked to environmental adaptation. Phylogenetic analyses involving all tribes of Fabaceae with published chloroplast genomes elucidated the evolutionary relationships, and divergence time estimation estimated the chronological order of species differentiations within the Fabaceae family. The results of phylogenetic analysis indicated that species from the six subfamilies formed distinct clusters, consistent with the classification scheme of the six subfamilies. In addition, the inverted repeat-lacking clade in the subfamily Papilionoideae clustered together, and it was the last to differentiate. Co-linear analysis confirmed the conserved nature of Glycyrrhiza chloroplast genomes, and instances of gene rearrangements and inversions were observed in the subfamily Papilionoideae

    Argon-helium knife cryoablation plus programmed cell death protein 1 inhibitor in the treatment of advanced soft tissue sarcomas: there is no evidence of the synergistic effects of this combination therapy

    Get PDF
    BackgroundEffective treatment for advanced soft tissue sarcomas (STSs) is necessary for improved outcomes. Previous studies have suggested that cryoablation can have a synergistic effect with programmed cell death protein-1 (PD-1) inhibitor in the treatment of malignancy. This study aimed to clarify the efficacy and safety of argon-helium knife cryoablation in combination with PD-1 inhibitor in the treatment of STSs.MethodsRetrospectively collected and analyzed the clinical data of patients with advanced STS who underwent cryoablation and PD-1 inhibitor between March 2018 and December 2021.ResultsThis study included 27 patients with advanced STS. In terms of target lesions treated with cryoablation, 1 patient achieved complete response, 15 patients had partial response (PR), 10 patients had stable disease, and 1 patient had progressive disease. This corresponded to an overall response rate of 59.3% and a disease control rate of 96.3%. In terms of distant target lesions untreated with cryoablation, only two patients had a PR compared to the diameter of the lesion before ablation. The combination therapy was relatively well tolerated. None of the patients experienced treatment-related death or delayed treatment due to adverse events.ConclusionCryoablation combined with PD-1 inhibitors in the therapy of advanced STS is safe and can effectively shrink the cryoablation-target lesion. However, there is no evidence of the synergistic effects of this combination therapy
    • …
    corecore