739 research outputs found

    RankMamba: Benchmarking Mamba's Document Ranking Performance in the Era of Transformers

    Full text link
    Transformer structure has achieved great success in multiple applied machine learning communities, such as natural language processing (NLP), computer vision (CV) and information retrieval (IR). Transformer architecture's core mechanism -- attention requires O(n2)O(n^2) time complexity in training and O(n)O(n) time complexity in inference. Many works have been proposed to improve the attention mechanism's scalability, such as Flash Attention and Multi-query Attention. A different line of work aims to design new mechanisms to replace attention. Recently, a notable model structure -- Mamba, which is based on state space models, has achieved transformer-equivalent performance in multiple sequence modeling tasks. In this work, we examine \mamba's efficacy through the lens of a classical IR task -- document ranking. A reranker model takes a query and a document as input, and predicts a scalar relevance score. This task demands the language model's ability to comprehend lengthy contextual inputs and to capture the interaction between query and document tokens. We find that (1) Mamba models achieve competitive performance compared to transformer-based models with the same training recipe; (2) but also have a lower training throughput in comparison to efficient transformer implementations such as flash attention. We hope this study can serve as a starting point to explore Mamba models in other classical IR tasks. Our code implementation and trained checkpoints are made public to facilitate reproducibility (https://github.com/zhichaoxu-shufe/RankMamba)

    Context-aware Decoding Reduces Hallucination in Query-focused Summarization

    Full text link
    Query-focused summarization (QFS) aims to provide a summary of a single document/multi documents that can satisfy the information needs of a given query. It is useful for various real-world applications, such as abstractive snippet generation or more recent retrieval augmented generation (RAG). A prototypical QFS pipeline consists of a retriever (sparse or dense retrieval) and a generator (usually a large language model). However, applying large language models (LLM) potentially leads to hallucinations, especially when the evidence contradicts the prior belief of LLMs. There has been growing interest in developing new decoding methods to improve generation quality and reduce hallucination. In this work, we conduct a large-scale reproducibility study on one recently proposed decoding method -- Context-aware Decoding (CAD). In addition to replicating CAD's experiments on news summarization datasets, we include experiments on QFS datasets, and conduct more rigorous analysis on computational complexity and hyperparameter sensitivity. Experiments with eight different language models show that performance-wise, CAD improves QFS quality by (1) reducing factuality errors/hallucinations while (2) mostly retaining the match of lexical patterns, measured by ROUGE scores, while also at a cost of increased inference-time FLOPs and reduced decoding speed. The code implementation based on Huggingface Library is made available https://github.com/zhichaoxu-shufe/context-aware-decoding-qfsComment: technical repor

    Towards Efficient Path Query on Social Network with Hybrid RDF Management

    Full text link
    The scalability and exibility of Resource Description Framework(RDF) model make it ideally suited for representing online social networks(OSN). One basic operation in OSN is to find chains of relations,such as k-Hop friends. Property path query in SPARQL can express this type of operation, but its implementation suffers from performance problem considering the ever growing data size and complexity of OSN.In this paper, we present a main memory/disk based hybrid RDF data management framework for efficient property path query. In this hybrid framework, we realize an efficient in-memory algebra operator for property path query using graph traversal, and estimate the cost of this operator to cooperate with existing cost-based optimization. Experiments on benchmark and real dataset demonstrated that our approach can achieve a good tradeoff between data load expense and online query performance
    • …
    corecore