53 research outputs found

    Characterization of mineral and pore evolution under CO2-brine-rock interaction at in-situ conditions

    Get PDF
    Herein, a method of physical modeling of CO2-brine-rock interaction and in-situ characterization of mineral and pore evolution is established. The nested preparation and installation of the same sample with different sizes could protect and keep the integrality of the millimeter-size sample in conventional high-temperature and high-pressure reactors. This paper establishes a procedure to obtain the three-dimensional in-situ comparison of minerals and pores before and after the reaction. The resolution is updated from 5-10 µ m to 10 nm, which could be helpful for modeling CO2-brine-rock interaction in unconventional tight reservoirs. This method could be applied to CO2-enhanced oil recovery as well as CO2 capture, utilization, and storage scientific research. Furthermore, it may shed light on the carbon sequestration schemes in the Chinese petroleum industry.Cited as: Wu, S., Yu, C., Hu, X., Yu, Z., Jiang, X. Characterization of mineral and pore evolution under CO2-brine-rock interaction at in-situ conditions. Advances in Geo-Energy Research, 2022, 6(2): 177-178. https://doi.org/10.46690/ager.2022.02.0

    U-Style: Cascading U-nets with Multi-level Speaker and Style Modeling for Zero-Shot Voice Cloning

    Full text link
    Zero-shot speaker cloning aims to synthesize speech for any target speaker unseen during TTS system building, given only a single speech reference of the speaker at hand. Although more practical in real applications, the current zero-shot methods still produce speech with undesirable naturalness and speaker similarity. Moreover, endowing the target speaker with arbitrary speaking styles in the zero-shot setup has not been considered. This is because the unique challenge of zero-shot speaker and style cloning is to learn the disentangled speaker and style representations from only short references representing an arbitrary speaker and an arbitrary style. To address this challenge, we propose U-Style, which employs Grad-TTS as the backbone, particularly cascading a speaker-specific encoder and a style-specific encoder between the text encoder and the diffusion decoder. Thus, leveraging signal perturbation, U-Style is explicitly decomposed into speaker- and style-specific modeling parts, achieving better speaker and style disentanglement. To improve unseen speaker and style modeling ability, these two encoders conduct multi-level speaker and style modeling by skip-connected U-nets, incorporating the representation extraction and information reconstruction process. Besides, to improve the naturalness of synthetic speech, we adopt mean-based instance normalization and style adaptive layer normalization in these encoders to perform representation extraction and condition adaptation, respectively. Experiments show that U-Style significantly surpasses the state-of-the-art methods in unseen speaker cloning regarding naturalness and speaker similarity. Notably, U-Style can transfer the style from an unseen source speaker to another unseen target speaker, achieving flexible combinations of desired speaker timbre and style in zero-shot voice cloning

    Optical dual-comb Vernier division of an octave-spanning Kerr microcomb

    Get PDF
    We measure the repetition rate of a 900 GHz octave-spanning soliton microcomb based on Vernier dual-comb frequency division implemented with two silicon nitride microresonator combs fabricated on the same wafer

    Optical Division of an Octave-Spanning Comb on an All-Silicon Nitride Platform

    Get PDF
    We demonstrate optical frequency division of an octave-spanning large repetition rate microcomb to an electronically-detectable frequency in an all-silicon nitride dual microcomb platform

    Vernier Microcombs for Integrated Optical Atomic Clocks

    Full text link
    CMOS-compatible Kerr microcombs have drawn substantial interest as mass-manufacturable, compact alternatives to bulk frequency combs. This could enable deployment of many comb-reliant applications previously confined to laboratories. Particularly enticing is the prospect of microcombs performing optical frequency division in compact optical atomic clocks. Unfortunately, it is difficult to meet the self-referencing requirement of microcombs in these systems due to the \simTHz repetition rates typically required for octave-spanning comb generation. Additionally, it is challenging to spectrally engineer a microcomb system to align a comb mode with an atomic clock transition with sufficient signal-to-noise ratio. Here, we adopt a Vernier dual-microcomb scheme for optical frequency division of a stabilized ultranarrow-linewidth continuous-wave laser at 871 nm to a \sim235 MHz output frequency. In addition to enabling measurement of the comb repetition rates, this scheme brings the freedom to pick comb lines from either or both of the combs. We exploit this flexibility to shift an ultra-high-frequency (\sim100 GHz) carrier-envelope offset beat down to frequencies where detection is possible and to place a comb line close to the 871 nm laser - tuned so that if frequency-doubled it would fall close to the clock transition in 171^{171}Yb+^+. Moreover, we introduce a novel scheme which suppresses frequency noise arising from interferometric phase fluctuations in our dual-comb system and reduces the frequency instability down to our measurement limit. Our dual-comb system can potentially combine with an integrated ion trap toward future chip-scale optical atomic clocks

    Vernier microcombs for high-frequency carrier envelope offset and repetition rate detection

    Get PDF
    Recent developments in Kerr microcombs may pave the way to a future with fully stabilized ultralow size, weight, and power consumption (SWaP) frequency combs. Nevertheless, Kerr microcombs are still hindered by a band-width/repetition rate trade-off. That is, the octave bandwidth needed for self-referencing is typically realized only with similar to THz repetition rates beyond the range of standard commercial photodetectors. The carrier envelope offset fre-quency fCEO is often likewise too high for detection. Dual-comb techniques for the measurement of THz repetition rates have made exciting progress, but the fCEO detection problem remains largely unaddressed. In this work, utilizing a Vernier dual-comb configuration, we demonstrate simultaneous detection of the electronically divided similar to 900 GHz rep-etition rate and similar to 97 GHz carrier envelope offset frequency of an octave-spanning microcomb. This, in turn, could help usher optical atomic clocks, low-noise microwave generators, and optical frequency synthesizers into various real-world applications.Published by Optica Publishing Group under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article\u27s title, journal citation, and DOI

    CodeFuse-13B: A Pretrained Multi-lingual Code Large Language Model

    Full text link
    Code Large Language Models (Code LLMs) have gained significant attention in the industry due to their wide applications in the full lifecycle of software engineering. However, the effectiveness of existing models in understanding non-English inputs for multi-lingual code-related tasks is still far from well studied. This paper introduces CodeFuse-13B, an open-sourced pre-trained code LLM. It is specifically designed for code-related tasks with both English and Chinese prompts and supports over 40 programming languages. CodeFuse achieves its effectiveness by utilizing a high quality pre-training dataset that is carefully filtered by program analyzers and optimized during the training process. Extensive experiments are conducted using real-world usage scenarios, the industry-standard benchmark HumanEval-x, and the specially designed CodeFuseEval for Chinese prompts. To assess the effectiveness of CodeFuse, we actively collected valuable human feedback from the AntGroup's software development process where CodeFuse has been successfully deployed. The results demonstrate that CodeFuse-13B achieves a HumanEval pass@1 score of 37.10%, positioning it as one of the top multi-lingual code LLMs with similar parameter sizes. In practical scenarios, such as code generation, code translation, code comments, and testcase generation, CodeFuse performs better than other models when confronted with Chinese prompts.Comment: 10 pages with 2 pages for reference
    corecore