48 research outputs found

    A Deep Reinforcement Learning Method for Model-based Optimal Control of HVAC Systems

    Get PDF
    Model-based optimal control (MOC) methods have strong potential to improve the energy efficiency of heating, ventilation and air conditioning (HVAC) system. However, most existing MOC methods require a low-order building model, which significantly limits the practicability of such methods. This study develops a novel model-based optimal control method for HVAC supervisory-level control based on the recently-proposed deep reinforcement learning (DRL) framework. The control method can directly use whole building energy model, a widely used flexible building modelling method, as the model and train an optimal control policy using DRL. By integrating deep learning models, the proposed control method can directly take the easily-measurable parameters, such as weather conditions and indoor environment conditions, as the input and controls the easily-controllable supervisory-level control points of HVAC systems. The proposed method is tested in an office building to control its radiant heating system. It is found that a dynamic optimal control policy can be successfully developed, and better heating energy efficiency can be achieved while maintaining the acceptable indoor thermal comfort. However, the “delayed reward problem” is found, which indicates the future work should firstly focus on the effective optimization of the deep reinforcement learning

    A Data-Driven Clustering Analysis for the Impact of COVID-19 on the Electricity Consumption Pattern of Zhejiang Province, China

    No full text
    The COVID-19 pandemic has impacted electricity consumption patterns and such an impact cannot be analyzed by simple data analytics. In China, specifically, city lock-down policies lasted for only a few weeks and the spread of COVID-19 was quickly under control. This has made it challenging to analyze the hidden impact of COVID-19 on electricity consumption. This paper targets the electricity consumption of a group of regions in China and proposes a new clustering-based method to quantitatively investigate the impact of COVID-19 on the industrial-driven electricity consumption pattern. This method performs K-means clustering on time-series electricity consumption data of multiple regions and uses quantitative metrics, including clustering evaluation metrics and dynamic time warping, to quantify the impact and pattern changes. The proposed method is applied to the two-year daily electricity consumption data of 87 regions of Zhejiang province, China, and quantitively confirms COVID-19 has changed the electricity consumption pattern of Zhejiang in both the short-term and long-term. The time evolution of the pattern change is also revealed by the method, so the impact start and end time can be inferred. Results also show the short-term impact of COVID-19 is similar across different regions, while the long-term impact is not. In some regions, the pandemic only caused a time-shift in electricity consumption; but in others, the electricity consumption pattern has been permanently changed. The data-driven analysis of this paper can be the first step to fully interpret the COVID-19 impact by considering economic and social parameters in future studies

    Theoretical Research on Environmental Evaluation Based on the Perspective of Rural Revitalization

    No full text
    In the process of rural revitalization and development, environmental evaluation plays an important role in nurturing rural planning and construction. Based on the urgent need to realize the intensive and efficient development of China’s rural areas, this paper studies the rural revitalization system and regional environmental evaluation at home and abroad, and then puts forward a new environmental value-added evaluation theory, and puts forward ideas for the follow-up study of this topic, aiming to solve the problems faced by the traditional evaluation system in terms of balanced coordination, weight assignment and quantitative embodiment, so as to provide a theoretical basis for the development of new rural planning

    Estimating Space-Cooling Energy Consumption and Indoor PM2.5 Exposure across Hong Kong Using a City-Representative Housing Stock Model

    No full text
    High-quality data on building energy use and indoor pollution are critical to supporting government efforts to reduce carbon emissions and improve the population’s health. This study describes the development of a city-representative housing stock model used for estimating space-cooling energy use and indoor PM2.5 exposure across the Hong Kong housing stock. Archetypes representative of Hong Kong dwellings were developed based on geographically-referenced housing databases. Simulations of unique combinations of archetype, occupation, and environment were run using EnergyPlus, estimating the annual space-cooling energy consumption and annual average PM2.5 exposure concentrations under both non-retrofit and retrofit scenarios. Results show that modern village houses and top-floor flats in high-rise residential buildings, on average, used 19% more space-cooling energy than other archetypes. Dwellings in urban areas had lower exposure to outdoor-sourced PM2.5 and higher exposure to indoor-sourced PM2.5 compared to those in rural areas. The percentage decrease in space-cooling energy consumption caused by energy efficiency retrofits, including external wall insulation, low-e windows, and airtightening, varied significantly based on archetype. The implementation of external wall insulation in the housing stock led to an average decrease of 3.5% in indoor PM2.5 exposure, whilst airtightening and low-e windows resulted in 7.9% and 0.2% average increases in exposure, respectively

    A Data-Driven Clustering Analysis for the Impact of COVID-19 on the Electricity Consumption Pattern of Zhejiang Province, China

    No full text
    The COVID-19 pandemic has impacted electricity consumption patterns and such an impact cannot be analyzed by simple data analytics. In China, specifically, city lock-down policies lasted for only a few weeks and the spread of COVID-19 was quickly under control. This has made it challenging to analyze the hidden impact of COVID-19 on electricity consumption. This paper targets the electricity consumption of a group of regions in China and proposes a new clustering-based method to quantitatively investigate the impact of COVID-19 on the industrial-driven electricity consumption pattern. This method performs K-means clustering on time-series electricity consumption data of multiple regions and uses quantitative metrics, including clustering evaluation metrics and dynamic time warping, to quantify the impact and pattern changes. The proposed method is applied to the two-year daily electricity consumption data of 87 regions of Zhejiang province, China, and quantitively confirms COVID-19 has changed the electricity consumption pattern of Zhejiang in both the short-term and long-term. The time evolution of the pattern change is also revealed by the method, so the impact start and end time can be inferred. Results also show the short-term impact of COVID-19 is similar across different regions, while the long-term impact is not. In some regions, the pandemic only caused a time-shift in electricity consumption; but in others, the electricity consumption pattern has been permanently changed. The data-driven analysis of this paper can be the first step to fully interpret the COVID-19 impact by considering economic and social parameters in future studies

    Shilling attack detection utilizing semi-supervised learning method for collaborative recommender system

    No full text
    Collaborative filtering (CF) technique is capable of generating personalized recommendations. However, the recommender systems utilizing CF as their key algorithms are vulnerable to shilling attacks which insert malicious user profiles into the systems to push or nuke the reputations of targeted items. There are only a small number of labeled users in most of the practical recommender systems, while a large number of users are unlabeled because it is expensive to obtain their identities. In this paper, Semi-SAD, a new semi-supervised learning based shilling attack detection algorithm is proposed to take advantage of both types of data. It first trains a naïve Bayes classifier on a small set of labeled users, and then incorporates unlabeled users with EM-λ to improve the initial naïve Bayes classifier. Experiments on MovieLens datasets are implemented to compare the efficiency of Semi-SAD with supervised learning based detector and unsupervised learning based detector. The results indicate that Semi-SAD can better detect various kinds of shilling attacks than others, especially against obfuscated and hybrid shilling attacks
    corecore