240 research outputs found

    A Novel Enhancement Algorithm Combined with Improved Fuzzy Set Theory for Low Illumination Images

    Get PDF
    A novel enhancement method of global brightness modulation and local contrast enhancement combined with the improved fuzzy set theory is proposed for color image contrast enhancement. The proposed method consists of three stages. Firstly, putting forward nonlinear global brightness mapping model adjusts dynamic range of images for luminance component V of HSV color space. Secondly, membership function is established in stages to adjust local contrast of image details nonlinearly based on fuzzy set theory. Finally, the enhanced images are transformed from HSV color space into RGB color space. The experiments further show that the proposed method has the shortest processing time, the highest AIC values, and the least NIQE values among the other four conventional methods. It has excellent effect, which can enhance the global brightness and local contrast, and advance visibility of low illumination images

    Interference between the halves of a double-well trap containing a Bose-Einstein condensate

    Full text link
    Interference between the halves of a double-well trap containing a Bose-Einstein condensate is studied. It is found that when the atoms in the two wells are initially in the coherent state, the intensity exhibits collapses and revivals, but it does not for the initial Fock states. Whether the initial states are in the coherent states or in a Fock states, the fidelity time has nothing to do with collision. We point out that interference and its fidelity can be adjusted experimentally by properly preparing the number and initial states of the system.Comment: 10 pages, 3 figures, accepted by Phy. rev.

    Degradation of the Separase-cleaved Rec8, a Meiotic Cohesin Subunit, by the N-end Rule Pathway

    Get PDF
    The Ate1 arginyltransferase (R-transferase) is a component of the N-end rule pathway, which recognizes proteins containing N-terminal degradation signals called N-degrons, polyubiquitylates these proteins, and thereby causes their degradation by the proteasome. Ate1 arginylates N-terminal Asp, Glu, or (oxidized) Cys. The resulting N-terminal Arg is recognized by ubiquitin ligases of the N-end rule pathway. In the yeast Saccharomyces cerevisiae, the separase-mediated cleavage of the Scc1/Rad21/Mcd1 cohesin subunit generates a C-terminal fragment that bears N-terminal Arg and is destroyed by the N-end rule pathway without a requirement for arginylation. In contrast, the separase-mediated cleavage of Rec8, the mammalian meiotic cohesin subunit, yields a fragment bearing N-terminal Glu, a substrate of the Ate1 R-transferase. Here we constructed and used a germ cell-confined Ate1−/− mouse strain to analyze the separase-generated C-terminal fragment of Rec8. We show that this fragment is a short-lived N-end rule substrate, that its degradation requires N-terminal arginylation, and that male Ate1−/− mice are nearly infertile, due to massive apoptotic death of Ate1−/− spermatocytes during the metaphase of meiosis I. These effects of Ate1 ablation are inferred to be caused, at least in part, by the failure to destroy the C-terminal fragment of Rec8 in the absence of N-terminal arginylation
    • …
    corecore