345 research outputs found

    Gray-body factor and absorption of the Dirac field in ESTGB gravity

    Full text link
    The gray-body factor and the absorption cross section of the 4D ESTGB gravity with a mode of nonlinear electrodynamics for the massless Dirac field are studied in this paper. The magnetic charge value varies between −2(53)/3-2^{(\frac{5}{3})}/3 and 00 as well as the ADM mass is set to 11, which corresponds to a non-extreme black hole. The gray-body factor is obtained using the semi-analytic WKB method after solving the massless Dirac equation. When the absolute value of magnetic charge is increasing, the gray-body factor γ(ω)\gamma(\omega) is decreasing. In addition, the partial absorption cross section and the total absorption cross section are calculated by using the partial wave method. We find that the maximum value of partial absorption cross section decreases as κ\kappa increases. And the existence of magnetic charge causes the diminishing of the total absorption cross section. Finally, we find that the absorption cross section of the Dirac field is more sensitive to electric charge than magnetic charge by comparing the absorption cross section of the Reissner-Nordstro¨\rm\ddot{o}m and ESTGB-NLED black holes.Comment: 11 pages, 7 figure

    Shadow, absorption and Hawking radiation of a Schwarzschild black hole surrounded by a cloud of strings in Rastall gravity

    Full text link
    This paper studies the black hole shadow, absorption cross section, and Hawking radiation of a massless scalar field in the background of a static spherically symmetric black hole spacetime that is surrounded by a cloud of strings in Rastall gravity. Specifically, the effects of the parameters aa and β\beta on the photon sphere and shadow radii are investigated. The results show that as the negative parameter β\beta decreases, the photon sphere and shadow radii change in an N-shape. In addition, the absorption cross section obtained after solving the massless Klein-Gordon equation is calculated using the sinc approximation and the partial waves method. We compare the absorption cross section obtained by the sinc approximation and the partial waves method, and find it to be exceptionally consistent in the mid-to-high frequency region. Furthermore, the effects of parameters aa and β\beta on absorption are examined in detail. Finally, we study in detail the effects of the parameters aa, β\beta and ll on the Hawking radiation power emission spectrum of the considered black hole. It turns out that the string parameter aa always suppresses the power emission spectrum, indicating that such black holes live longer when the string parameter aa is increased while other parameters are fixed.Comment: 27 pages, 10 figures, 1 Tabl

    RIDCP: Revitalizing Real Image Dehazing via High-Quality Codebook Priors

    Full text link
    Existing dehazing approaches struggle to process real-world hazy images owing to the lack of paired real data and robust priors. In this work, we present a new paradigm for real image dehazing from the perspectives of synthesizing more realistic hazy data and introducing more robust priors into the network. Specifically, (1) instead of adopting the de facto physical scattering model, we rethink the degradation of real hazy images and propose a phenomenological pipeline considering diverse degradation types. (2) We propose a Real Image Dehazing network via high-quality Codebook Priors (RIDCP). Firstly, a VQGAN is pre-trained on a large-scale high-quality dataset to obtain the discrete codebook, encapsulating high-quality priors (HQPs). After replacing the negative effects brought by haze with HQPs, the decoder equipped with a novel normalized feature alignment module can effectively utilize high-quality features and produce clean results. However, although our degradation pipeline drastically mitigates the domain gap between synthetic and real data, it is still intractable to avoid it, which challenges HQPs matching in the wild. Thus, we re-calculate the distance when matching the features to the HQPs by a controllable matching operation, which facilitates finding better counterparts. We provide a recommendation to control the matching based on an explainable solution. Users can also flexibly adjust the enhancement degree as per their preference. Extensive experiments verify the effectiveness of our data synthesis pipeline and the superior performance of RIDCP in real image dehazing.Comment: Acceptted by CVPR 202

    Experimental observation of Dirac-like surface states and topological phase transition in Pb1−x_{1-x}Snx_xTe(111) films

    Full text link
    The surface of a topological crystalline insulator (TCI) carries an even number of Dirac cones protected by crystalline symmetry. We epitaxially grew high quality Pb1−x_{1-x}Snx_xTe(111) films and investigated the TCI phase by in-situ angle-resolved photoemission spectroscopy. Pb1−x_{1-x}Snx_xTe(111) films undergo a topological phase transition from trivial insulator to TCI via increasing the Sn/Pb ratio, accompanied by a crossover from n-type to p-type doping. In addition, a hybridization gap is opened in the surface states when the thickness of film is reduced to the two-dimensional limit. The work demonstrates an approach to manipulating the topological properties of TCI, which is of importance for future fundamental research and applications based on TCI

    Stark tuning of telecom single-photon emitters based on a single Er3+^{3+}

    Full text link
    The implementation of scalable quantum networks requires photons at the telecom band and long-lived spin coherence. The single Er3+^{3+} in solid-state hosts is an important candidate that fulfills these critical requirements simultaneously. However, to entangle distant Er3+^{3+} ions through photonic connections, the emission frequency of individual Er3+^{3+} in solid-state matrix must be the same, which is challenging because the emission frequency of Er3+^{3+} depends on its local environment. In this study, we propose and experimentally demonstrate the Stark tuning of the emission frequency of a single Er3+^{3+} in a Y2_2SiO5_5 crystal by employing electrodes interfaced with a silicon photonic crystal cavity. We obtain a Stark shift of 182.9 ±\pm 0.8 MHz which is approximately 27 times of the optical emission linewidth, demonstrating the promising applications in tuning the emission frequency of independent Er3+^{3+} into the same spectral channels. Our results provide a useful solution for the construction of scalable quantum networks based on single Er3+^{3+} and a universal tool for tuning the emission of individual rare-earth ions

    Human Bocavirus Infection, People’s Republic of China

    Get PDF
    A newly identified parvovirus, human bocavirus (HBoV), was found in 21 (8.3%) of 252 nasopharyngeal aspirates from hospitalized children with lower respiratory tract infection in Hunan Province, People’s Republic of China. Viral loads were 104 to 1010 copies/mL. Phylogenetic analysis of the VP1 gene showed a single genetic lineage of HBoV worldwide
    • …
    corecore