2,104 research outputs found

    Hunting for Heavy Majorana Neutrinos with Lepton Number Violating Signatures at LHC

    Full text link
    The neutrinophilic two-Higgs-doublet model (Ξ½\nu2HDM) provides a natural way to generate tiny neutrino mass from interactions with the new doublet scalar Φν\Phi_\nu (HΒ±,Β H,Β AH^\pm,~H,~A) and singlet neutrinos NRN_R of TeV scale. In this paper, we perform detailed simulations for the lepton number violating (LNV) signatures at LHC arising from cascade decays of the new scalars and neutrinos with the mass order mNR<mΦνm_{N_R}<m_{\Phi_\nu}. Under constraints from lepton flavor violating processes and direct collider searches, their decay properties are explored and lead to three types of LNV signatures: 2β„“Β±4j+ET2\ell^\pm 4j+\cancel{E}_T, 3β„“Β±4j+ET3\ell^\pm 4j+\cancel{E}_T, and 3β„“Β±β„“βˆ“4j3\ell^\pm\ell^\mp 4j. We find that the same-sign trilepton signature 3β„“Β±4j+ET3\ell^\pm4j+\cancel{E}_T is quite unique and is the most promising discovery channel at the high-luminosity LHC. Our analysis also yields the 95%95\% C.L. exclusion limits in the plane of the Φν\Phi_\nu and NRN_R masses at 13 (14) TeV LHC with an integrated luminosity of 100~(3000)/fb.Comment: 31 pages, 17 figures, 6 tables; v2: added a few refs and updated one ref, without other change

    Chromaticity of a family of K4 homeomorphs

    Get PDF
    AbstractA K4 homeomorph can be described as a graph on n vertices having 4 vertices of degree 3 and n βˆ’ 4 vertices of degree 2; each pair of degree 3 vertices is joined by a path. We study the chromatic uniqueness and chromatic equivalence of one family of K4 homeomorphs. This family has exactly 3 paths of length one. The results of this study leads us to solve 3 of the problems posed by Koh and Teo in their 1990 survey paper which appeared in Graphs and Combinatorics

    Zc(3900)Z_c(3900) as a DDΛ‰βˆ—D\bar{D}^* molecule from the pole counting rule

    Full text link
    A comprehensive study on the nature of the Zc(3900)Z_c(3900) resonant structure is carried out in this work. By constructing the pertinent effective Lagrangians and considering the important final-state-interaction effects, we first give a unified description to all the relevant experimental data available, including the J/ΟˆΟ€J/\psi\pi and ππ\pi\pi invariant mass distributions from the e+eβˆ’β†’J/ΟˆΟ€Ο€e^+e^-\to J/\psi\pi\pi process, the hcΟ€h_c\pi distribution from e+eβˆ’β†’hcππe^+e^-\to h_c\pi\pi and also the DDΛ‰βˆ—D\bar D^{*} spectrum in the e+eβˆ’β†’DDΛ‰βˆ—Ο€e^+e^-\to D\bar D^{*}\pi process. After fitting the unknown parameters to the previous data, we search the pole in the complex energy plane and find only one pole in the nearby energy region in different Riemann sheets. Therefore we conclude that Zc(3900)Z_c(3900) is of DDΛ‰βˆ—D\bar D^* molecular nature, according to the pole counting rule method~[Nucl.~Phys.~A543, 632 (1992); Phys.~Rev.~D 35,~1633 (1987)]. We emphasize that the conclusion based upon the pole counting method is not trivial, since both the DDΛ‰βˆ—D\bar D^{*} contact interactions and the explicit ZcZ_c exchanges are introduced in our analyses and they lead to the same conclusion.Comment: 21 pages, 9 figures. To match the published version in PRD. Additional discussion on the spectral density function is include

    Guidance Law Design for a Class of Dual-Spin Mortars

    Get PDF
    To minimize the cost and maximize the ease of use, a class of dual-spin mortars is designed which only rely on GPS receiver and geomagnetic measurements. However, there are some problems to be solved when the range is small, such as low correction authority and trajectory bending. Guidance law design for this mortar is detailed. Different guidance laws were designed for the ascending and descending segments, respectively. By taking variable parameter guidance law in the vertical plane and using compensation in the lateral plane, the problems mentioned above were resolved. Roll angle resolving algorithms with geomagnetic measurements were demonstrated and the experiment results proved to be effective. In order to verify the effectiveness, Seven-Degrees-of-Freedom (7-DOF) rigid ballistic model were established and hardware in the loop simulation was introduced. After the transform function of the actuator was obtained, the control model of the shell was improved. The results of the Monte Carlo simulation demonstrate that the guidance law is suitable and the mortar can be effectively controlled
    • …
    corecore