1,501 research outputs found

    Viral Oncogenes, Noncoding RNAs, and RNA Splicing in Human Tumor Viruses

    Get PDF
    Viral oncogenes are responsible for oncogenesis resulting from persistent virus infection. Although different human tumor viruses express different viral oncogenes and induce different tumors, their oncoproteins often target similar sets of cellular tumor suppressors or signal pathways to immortalize and/or transform infected cells. Expression of the viral E6 and E7 oncogenes in papillomavirus, E1A and E1B oncogenes in adenovirus, large T and small t antigen in polyomavirus, and Tax oncogene in HTLV-1 are regulated by alternative RNA splicing. However, this regulation is only partially understood. DNA tumor viruses also encode noncoding RNAs, including viral microRNAs, that disturb normal cell functions. Among the determined viral microRNA precursors, EBV encodes 25 from two major clusters (BART and BHRF1), KSHV encodes 12 from a latent region, human polyomavirus MCV produce only one microRNA from the late region antisense to early transcripts, but HPVs appears to produce no viral microRNAs

    Reflective low-sideband plasmonic structural colors

    Get PDF
    It is demonstrated experimentally that an aluminum (Al) nanowire grating structure on silicon substrates can produce low-side-band monochromatic peak when it reflects colored light in the transverse magnetic (TM) mode. The central wavelength of the reflection is shown to be sensitive to the incident angle, which leads to significant color shifts. Formation of the monochromatic peak is attributed to the surface plasmon resonance on the interface between Al and air, together with remarkable diffraction at shorter wavelengths and strong Fabry-Perot (F-P) resonance absorption by Al-surrounding nano-cavities and silicon substrate at longer wavelengths. In contrast, reflection in transverse electric (TE) mode does not show distinct wavelength selectivity due to the cut-off effect of the nano-cavities. The outstanding characters of the proposed structure with polarization dependence, high sensitivity to incident angle, high color rendering facilitate more compact and sophisticated color-filter-based devices for displays, anti-counterfeit, and sensing applications. In addition, the two-dimensional structure with thin grating thickness and high duty ratio tolerance is relatively easy for fabrication

    Single-photon-triggered quantum chaos

    Get PDF
    We demonstrate how to manipulate quantum chaos with a single photon in a hybrid quantum device combining cavity QED and optomechanics. Specifically, we show that this system changes between integrable and chaotic relying on the photon-state of the injected field. This onset of chaos originates from the photon-dependent chaotic threshold of the qubit-field coupling induced by the optomechanical interaction. By deriving the Loschmidt Echo we observe clear differences in the sensitivity to perturbations in the regular versus chaotic regimes. We also present classical analog of this chaotic behavior, and find good correspondence between chaotic quantum dynamics and classical physics. Our work opens up a new route to achieve quantum manipulations, which are crucial elements in engineering new types of on-chip quantum devices and quantum information science.Comment: 11 pages, 4 figure
    • …
    corecore