1,964 research outputs found

    Light vector meson and heavy baryon strong interaction

    Full text link
    We calculate the coupling constants between the light vector mesons and heavy baryons within the framework of the light-cone QCD sum rule in the leading order of heavy quark effective theory. Most resulting sum rules are stable with the variations of the Borel parameter and the continuum threshold. The extracted couplings will be useful in the study of the possible heavy baryon molecular states

    Topological Wannier cycles for the bulk and edges

    Full text link
    Topological materials are often characterized by unique edge states which are in turn used to detect different topological phases in experiments. Recently, with the discovery of various higher-order topological insulators, such spectral topological characteristics are extended from edge states to corner states. However, the chiral symmetry protecting the corner states is often broken in genuine materials, leading to vulnerable corner states even when the higher-order topological numbers remain quantized and invariant. Here, we show that a local artificial gauge flux can serve as a robust probe of the Wannier type higher-order topological insulators which is effective even when the chiral symmetry is broken. The resultant observable signature is the emergence of the cyclic spectral flows traversing one or multiple band gaps. These spectral flows are associated with the local modes bound to the artificial gauge flux. This phenomenon is essentially due to the cyclic transformation of the Wannier orbitals when the local gauge flux acts on them. We extend topological Wannier cycles to systems with C2 and C3 symmetries and show that they can probe both the bulk and the edge Wannier centers, yielding rich topological phenomena

    Ab initio study of the giant ferroelectric distortion and pressure induced spin-state transition in BiCoO3

    Full text link
    Using configuration-state-constrained electronic structure calculations based on the generalized gradient approximation plus Hubbard U method, we sought the origin of the giant tetragonal ferroelectric distortion in the ambient phase of the potentially multiferroic material BiCoO3 and identified the nature of the pressure induced spin-state transition. Our results show that a strong Bi-O covalency drives the giant ferroelectric distortion, which is further stabilized by an xy-type orbital ordering of the high-spin (HS) Co3+ ions. For the orthorhombic phase under 5.8 GPa, we find that a mixed HS and low-spin (LS) state is more stable than both LS and intermediate-spin (IS) states, and that the former well accounts for the available experimental results. Thus, we identify that the pressure induced spin-state transition is via a mixed HS+LS state, and we predict that the HS-to-LS transition would be complete upon a large volume decrease of about 20%.Comment: 6 pages, 6 figures, 2 table
    • …
    corecore