1,535 research outputs found

    Faithful completion of images of scenic landmarks using internet images

    Get PDF
    Abstract—Previous works on image completion typically aim to produce visually plausible results rather than factually correct ones. In this paper, we propose an approach to faithfully complete the missing regions of an image. We assume that the input image is taken at a well-known landmark, so similar images taken at the same location can be easily found on the Internet. We first download thousands of images from the Internet using a text label provided by the user. Next, we apply two-step filtering to reduce them to a small set of candidate images for use as source images for completion. For each candidate image, a co-matching algorithm is used to find correspondences of both points and lines between the candidate image and the input image. These are used to find an optimal warp relating the two images. A completion result is obtained by blending the warped candidate image into the missing region of the input image. The completion results are ranked according to combination score, which considers both warping and blending energy, and the highest ranked ones are shown to the user. Experiments and results demonstrate that our method can faithfully complete images

    Efficient, edge-aware, combined color quantization and dithering

    Get PDF
    Abstract—In this paper we present a novel algorithm to simultaneously accomplish color quantization and dithering of images. This is achieved by minimizing a perception-based cost function which considers pixel-wise differences between filtered versions of the quantized image and the input image. We use edge aware filters in defining the cost function to avoid mixing colors on opposite sides of an edge. The importance of each pixel is weighted according to its saliency. To rapidly minimize the cost function, we use a modified multi-scale iterative conditional mode (ICM) algorithm which updates one pixel a time while keeping other pixels unchanged. As ICM is a local method, careful initialization is required to prevent termination at a local minimum far from the global one. To address this problem, we initialize ICM with a palette generated by a modified median-cut method. Compared to previous approaches, our method can produce high quality results with fewer visual artifacts but also requires significantly less computational effort. Index Terms—Color quantization, dithering, optimization-based image processing. I

    An Improved Chloroplast DNA Extraction Procedure for Whole Plastid Genome Sequencing

    Get PDF
    Background: Chloroplast genomes supply valuable genetic information for evolutionary and functional studies in plants. The past five years have witnessed a dramatic increase in the number of completely sequenced chloroplast genomes with the application of second-generation sequencing technology in plastid genome sequencing projects. However, costeffective high-throughput chloroplast DNA (cpDNA) extraction becomes a major bottleneck restricting the application, as conventional methods are difficult to make a balance between the quality and yield of cpDNAs. Methodology/Principal Findings: We first tested two traditional methods to isolate cpDNA from the three species, Oryza brachyantha, Leersia japonica and Prinsepia utihis. Both of them failed to obtain properly defined cpDNA bands. However, we developed a simple but efficient method based on sucrose gradients and found that the modified protocol worked efficiently to isolate the cpDNA from the same three plant species. We sequenced the isolated DNA samples with Illumina (Solexa) sequencing technology to test cpDNA purity according to aligning sequence reads to the reference chloroplast genomes, showing that the reference genome was properly covered. We show that 40–50 % cpDNA purity is achieved with our method. Conclusion: Here we provide an improved method used to isolate cpDNA from angiosperms. The Illumina sequencing results suggest that the isolated cpDNA has reached enough yield and sufficient purity to perform subsequent genom

    Strong quantum fluctuation of vortices in the new superconductor MgB2MgB_2

    Full text link
    By using transport and magnetic measurement, the upper critical field Hc2(T)H_{c2}(T) and the irreversibility line Hirr(T)H_{irr}(T) has been determined. A big separation between Hc2(0)H_{c2}(0) and Hirr(0)H_{irr}(0) has been found showing the existence of a quantum vortex liquid state induced by quantum fluctuation of vortices in the new superconductor MgB2MgB_2. Further investigation on the magnetic relaxation shows that both the quantum tunneling and the thermally activated flux creep weakly depends on temperature. But when the melting field HirrH_{irr} is approached, a drastic rising of the relaxation rate is observed. This may imply that the melting of the vortex matter at a finite temperature is also induced by the quantum fluctuation of vortices.Comment: 4 pages, 4 figure

    Long-Term Nucleos(t)ide Analogues Therapy for Adults With Chronic Hepatitis B reduces the Risk of Long-Term Complications: a meta-analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The effect of antiviral therapy in chronic hepatitis B (CHB) on reducing the risk of long-term complications (LTCs) remains unclear so far. To study whether long-term nucleos(t)ide analogues therapy can reduce the risk of long-term complications.</p> <p>Methods</p> <p>We searched MEDLINE, EMBASE, OVID, the Cochrane Central Register of Controlled Trials. Relative risks (RRs) of long-term complications with or without treatment were studied. Also subgroup analyses including the status of drug-resistance, HBeAg and pre-existing compensated cirrhosis were done using relative risks of long-term complications either with or without treatment or among nucleos(t)ide analogues treatment groups.</p> <p>Results</p> <p>Six eligible studies (3644 patients in all) were included. Data showed the incidence of long-term complications in treatment groups was induced by 74%(RR:0.26, 95% CI: 0.15-0.47) compared with no treatment. Whether drug-resistant happened or not during the long-term therapy, the incidence of long-term complications was still significantly induced respectively by 45%(RR: 0.55,95%CI:0.40-0.76) and 78% (RR:0.22, 95%CI: 0.13-0.36). For both different status of HBeAg and pre-existing compensated cirrhosis, there was significant lower incidence of long-term complications in treatment groups compared with no treatment, too. Moreover, among the NA treatment groups, patients with drug-resistance had 2.64 times (RR:2.64, 95%CI: 1.58-4.41) higher chance of developing to long-term complications, and patients with pre-existing compensated cirrhosis also had 3.07 times (RR:3.07, 95%CI: 1.04-9.11) higher chance of developing to long-term complications.</p> <p>Conclusions</p> <p>Long-term nucleos(t)ide analogue therapy for adults with CHB prevents or delays the development of long-term complications including decompensated cirrhosis, CHB-related death or CHB-related HCC in patients with CHB. The patients who need take antiviral drugs should receive the antiviral therapy as soon as possible.</p

    Detecting unambiguously non-Abelian geometric phases with trapped ions

    Full text link
    We propose for the first time an experimentally feasible scheme to disclose the noncommutative effects induced by a light-induced non-Abelian gauge structure with trapped ions. Under an appropriate configuration, a true non-Abelian gauge potential naturally arises in connection with the geometric phase associated with two degenerated dark states in a four-state atomic system interacting with three pulsed laser fields. We show that the population in atomic state at the end of a composed path formed by two closed loops C1C_1 and C2C_2 in the parameter space can be significantly different from the composed counter-ordered path. This population difference is directly induced by the noncommutative feature of non-Abelian geometric phases and can be detected unambiguously with current technology.Comment: 6 page

    T-square resistivity without Umklapp scattering in dilute metallic Bi2_2O2_2Se

    Full text link
    The electrical resistivity of Fermi liquids (FLs) displays a quadratic temperature (TT) dependence because of electron-electron (e-e) scattering. For such collisions to decay the charge current, there are two known mechanisms: inter-band scattering (identified by Baber) and Umklapp events. However, dilute metallic strontium titanate (STO) was found to display T2T^2 resistivity in absence of either of these two mechanisms. The presence of soft phonons and their possible role as scattering centers raised the suspicion that TT-square resistivity in STO is not due to e-e scattering. Here, we present the case of Bi2_2O2_2Se, a layered semiconductor with hard phonons, which becomes a dilute metal with a small single-component Fermi surface upon doping. It displays TT-square resistivity well below the degeneracy temperature where neither Umklapp nor interband scattering is conceivable. We observe a universal scaling between the prefactor of T2T^2 resistivity and the Fermi energy, which is an extension of the Kadowaki-Woods plot to dilute metals. Our results imply the absence of a satisfactory theoretical basis for the ubiquity of e-e driven TT-square resistivity in Fermi liquids.Comment: 7 pages, 4 figure
    • …
    corecore