3,352 research outputs found
A Robust Quantum Random Access Memory
A "bucket brigade" architecture for a quantum random memory of memory
cells needs times of quantum manipulation on control circuit nodes
per memory call. Here we propose a scheme, in which only average times
manipulation is required to accomplish a memory call. This scheme may
significantly decrease the time spent on a memory call and the average overall
error rate per memory call. A physical implementation scheme for storing an
arbitrary state in a selected memory cell followed by reading it out is
discussed.Comment: 5 pages, 3 figure
Controlling Chaos in a Neural Network Based on the Phase Space Constraint
The chaotic neural network constructed with chaotic neurons exhibits very rich dynamic
behaviors and has a nonperiodic associative memory. In the chaotic neural network,
however, it is dicult to distinguish the stored patters from others, because the states of
output of the network are in chaos. In order to apply the nonperiodic associative memory
into information search and pattern identication, etc, it is necessary to control chaos in
this chaotic neural network. In this paper, the phase space constraint method focused on
the chaotic neural network is proposed. By analyzing the orbital of the network in phase
space, we chose a part of states to be disturbed. In this way, the evolutional spaces of
the strange attractors are constrained. The computer simulation proves that the chaos
in the chaotic neural network can be controlled with above method and the network can
converge in one of its stored patterns or their reverses which has the smallest Hamming
distance with the initial state of the network. The work claries the application prospect
of the associative dynamics of the chaotic neural network
Optical loss compensation in a bulk left-handed metamaterial by the gain in quantum dots
A bulk left-handed metamaterial with fishnet structure is investigated to
show the optical loss compensation via surface plasmon amplification, with the
assistance of a Gaussian gain in PbS quantum dots. The optical resonance
enhancement around 200 THz is confirmed by the retrieval method. By exploring
the dependence of propagation loss on the gain coefficient and metamaterial
thickness, we verify numerically that the left-handed response can endure a
large propagation thickness with ultralow and stable loss under a certain gain
coefficient.Comment: 6 pages with 4 figure
- …