1,244 research outputs found

    Low-Light Enhancement in the Frequency Domain

    Full text link
    Decreased visibility, intensive noise, and biased color are the common problems existing in low-light images. These visual disturbances further reduce the performance of high-level vision tasks, such as object detection, and tracking. To address this issue, some image enhancement methods have been proposed to increase the image contrast. However, most of them are implemented only in the spatial domain, which can be severely influenced by noise signals while enhancing. Hence, in this work, we propose a novel residual recurrent multi-wavelet convolutional neural network R2-MWCNN learned in the frequency domain that can simultaneously increase the image contrast and reduce noise signals well. This end-to-end trainable network utilizes a multi-level discrete wavelet transform to divide input feature maps into distinct frequencies, resulting in a better denoise impact. A channel-wise loss function is proposed to correct the color distortion for more realistic results. Extensive experiments demonstrate that our proposed R2-MWCNN outperforms the state-of-the-art methods quantitively and qualitatively.Comment: 8 page

    A Comparative Study on Regularization Strategies for Embedding-based Neural Networks

    Full text link
    This paper aims to compare different regularization strategies to address a common phenomenon, severe overfitting, in embedding-based neural networks for NLP. We chose two widely studied neural models and tasks as our testbed. We tried several frequently applied or newly proposed regularization strategies, including penalizing weights (embeddings excluded), penalizing embeddings, re-embedding words, and dropout. We also emphasized on incremental hyperparameter tuning, and combining different regularizations. The results provide a picture on tuning hyperparameters for neural NLP models.Comment: EMNLP '1

    Classifying Relations via Long Short Term Memory Networks along Shortest Dependency Path

    Full text link
    Relation classification is an important research arena in the field of natural language processing (NLP). In this paper, we present SDP-LSTM, a novel neural network to classify the relation of two entities in a sentence. Our neural architecture leverages the shortest dependency path (SDP) between two entities; multichannel recurrent neural networks, with long short term memory (LSTM) units, pick up heterogeneous information along the SDP. Our proposed model has several distinct features: (1) The shortest dependency paths retain most relevant information (to relation classification), while eliminating irrelevant words in the sentence. (2) The multichannel LSTM networks allow effective information integration from heterogeneous sources over the dependency paths. (3) A customized dropout strategy regularizes the neural network to alleviate overfitting. We test our model on the SemEval 2010 relation classification task, and achieve an F1F_1-score of 83.7\%, higher than competing methods in the literature.Comment: EMNLP '1

    Full-frame data reduction method: a data mining tool to detect the potential variations in optical photometry

    Full text link
    A Synchronous Photometry Data Extraction (SPDE) program, performing indiscriminate monitors of all stars appearing at the same field of view of astronomical image, is developed by integrating several Astropy affiliated packages to make full use of time series observed by the traditional small/medium aperture ground-based telescope. The complete full-frame stellar photometry data reductions implemented for the two time series of cataclysmic variables: RX J2102.0+3359 and Paloma J0524+4244 produce 363 and 641 optimal light curves, respectively. A cross-identification with the SIMBAD finds 23 known stars, of which 16 red giant-/horizontal-branch stars, 2 W UMa-type eclipsing variables, 2 program stars, a X-ray source and 2 Asteroid Terrestrial-impact Last Alert System variables. Based on the data productions of the SPDE program, a followup Light Curve Analysis (LCA) program identifies 32 potential variable light curves, of which 18 are from the time series of RX J2102.0+3359, and 14 are from that of Paloma J0524+4244. They are preliminarily separated into periodical, transient, and peculiar types. By querying for the 58 VizieR online data catalogs, their physical parameters and multi-band brightness spanning from X-ray to radio are compiled for future analysis.Comment: 35pages, 8 figures, accepted by RA

    Building Program Vector Representations for Deep Learning

    Full text link
    Deep learning has made significant breakthroughs in various fields of artificial intelligence. Advantages of deep learning include the ability to capture highly complicated features, weak involvement of human engineering, etc. However, it is still virtually impossible to use deep learning to analyze programs since deep architectures cannot be trained effectively with pure back propagation. In this pioneering paper, we propose the "coding criterion" to build program vector representations, which are the premise of deep learning for program analysis. Our representation learning approach directly makes deep learning a reality in this new field. We evaluate the learned vector representations both qualitatively and quantitatively. We conclude, based on the experiments, the coding criterion is successful in building program representations. To evaluate whether deep learning is beneficial for program analysis, we feed the representations to deep neural networks, and achieve higher accuracy in the program classification task than "shallow" methods, such as logistic regression and the support vector machine. This result confirms the feasibility of deep learning to analyze programs. It also gives primary evidence of its success in this new field. We believe deep learning will become an outstanding technique for program analysis in the near future.Comment: This paper was submitted to ICSE'1

    Rigid vortices in MgB2

    Full text link
    Magnetic relaxation of high-pressure synthesized MgB2_2 bulks with different thickness is investigated. It is found that the superconducting dia-magnetic moment depends on time in a logarithmic way; the flux-creep activation energy decreases linearly with the current density (as expected by Kim-Anderson model); and the activation energy increases linearly with the thickness of sample when it is thinner than about 1 mm. These features suggest that the vortices in the MgB2_2 are rather rigid, and the pinning and creep can be well described by Kim-Anderson model.Comment: Typo corrected & reference adde

    Shadow thermodynamics of the Hayward-AdS black hole

    Full text link
    In this paper, the phase structure of the Hayward-AdS black hole (BH) is studied using shadow formalism. It has been found that the shadow radius is a monotonic function of the horizon radius and can therefore play an equivalent role to the horizon radius in characterizing the thermodynamics of Hayward-AdS BH. The thermodynamic phase transition (PT) of the Hayward-AdS BH is investigated with the shadow radius. It is shown that as the magnetic charge increases, the shadow radius becomes larger, while the coexistence temperature becomes lower. The thermal profile of the Hayward-AdS BH is established by combining the temperature diagram and the shadow cast diagram, which shows that for a fixed magnetic charge, the temperature of the Hayward-AdS BH increases with the pressure while the region of the thermal profile decreases with the pressure. In particular, the temperature of the Hayward-AdS BH follows an N-type change trend when it is smaller than the critical temperature. This imply that the BH shadow may be used to investigate the thermodynamics of the Hayward-AdS BH.Comment: 14 pages, 6 figure

    Experimental Test of Tracking the King Problem

    Full text link
    In quantum theory, the retrodiction problem is not as clear as its classical counterpart because of the uncertainty principle of quantum mechanics. In classical physics, the measurement outcomes of the present state can be used directly for predicting the future events and inferring the past events which is known as retrodiction. However, as a probabilistic theory, quantum-mechanical retrodiction is a nontrivial problem that has been investigated for a long time, of which the Mean King Problem is one of the most extensively studied issues. Here, we present the first experimental test of a variant of the Mean King Problem, which has a more stringent regulation and is termed "Tracking the King". We demonstrate that Alice, by harnessing the shared entanglement and controlled-not gate, can successfully retrodict the choice of King's measurement without knowing any measurement outcome. Our results also provide a counterintuitive quantum communication to deliver information hidden in the choice of measurement.Comment: 16 pages, 5 figures, 2 table
    • …
    corecore