9,292 research outputs found

    Analysis of the B→K2∗(1430),a2(1320),f2(1270)B \to K^*_2(1430), a_2(1320), f_2(1270) form-factors with light-cone QCD sum rules

    Full text link
    In this article, we study the B→K2∗(1430)B \to K^*_2(1430), a2(1320)a_2(1320), f2(1270)f_2(1270) form-factors with the light-cone QCD sum rules, where the BB-meson light-cone distribution amplitudes are used. In calculations, we observe that the line-shapes of the BB-meson light-cone distribution amplitude ϕ+(ω)\phi_+(\omega) have significant impacts on the values of the form-factors, and expect to obtain severe constraints on the parameters of the BB-meson light-cone distribution amplitudes from the experimental data in the future.Comment: 19 pages, 6 figures, slight revisio

    Semileptonic Decay of BB and D→K0∗(1430)ℓˉνD\to K^*_0(1430) \bar{\ell}\nu From QCD Sum Rule

    Full text link
    We calculate B(s)B_{(s)}, and D(s)D_{(s)} to K0∗(1430)K^*_0(1430) transition form factors, and study semileptonic decays of B(s)B_{(s)} and D(s)→K0∗(1430)ℓˉνD_{(s)}\to K_0^*(1430) \bar{\ell}\nu based on QCD sum rule. Measuring these semileptonic decays with high statistics will give valuable information on the nature of light scalar mesons.Comment: 13 pages, 5 figures,latex,typos and errors correcte

    Event-by-event shape and flow fluctuations of relativistic heavy-ion collision fireballs

    Full text link
    Heavy-ion collisions create deformed quark-gluon plasma (QGP) fireballs which explode anisotropically. The viscosity of the fireball matter determines its ability to convert the initial spatial deformation into momentum anisotropies that can be measured in the final hadron spectra. A quantitatively precise empirical extraction of the QGP viscosity thus requires a good understanding of the initial fireball deformation. This deformation fluctuates from event to event, and so does the finally observed momentum anisotropy. We present a harmonic decomposition of the initial fluctuations in shape and orientation of the fireball and perform event-by-event ideal fluid dynamical simulations to extract the resulting fluctuations in the magnitude and direction of the corresponding harmonic components of the final anisotropic flow at midrapidity. The final harmonic flow coefficients are found to depend non-linearly on the initial harmonic eccentricity coefficients. We show that, on average, initial density fluctuations suppress the buildup of elliptic flow relative to what one obtains from a smooth initial profile of the same eccentricity, and discuss implications for the phenomenological extraction of the QGP shear viscosity from experimental elliptic flow data.Comment: 22 pages, 17 figures. Relative to [v2], minor changes in text. Fig. 9 redrawn. This version accepted by Phys. Rev.

    Relativistic corrections to J/ψJ/\psi exclusive and inclusive double charm production at B factories

    Get PDF
    In order to clarify the puzzling problems in double charm production, relativistic corrections at order v2v^{2} to the processes e+e−→J/ψ+ηce^{+}e^{-}\to J/\psi+\eta_{c} and e+e−→J/ψ+ccˉe^{+}e^{-}\to J/\psi+c\bar{c} at B factories are studied in non-relativistic quantum chromodynamics. The short-distance parts of production cross sections are calculated perturbatively, while the long-distance matrix elements are estimated from J/ψJ/\psi and ηc\eta_c decays up to errors of order v4v^4. Our results show that the relativistic correction to the exclusive process e+e−→J/ψ+ηce^{+}e^{-}\to J/\psi+\eta_{c} is significant, which, when combined together with the next-to-leading order αs\alpha_{s} corrections, could resolve the large discrepancy between theory and experiment; whereas for the inclusive process e+e−→J/ψ+ccˉe^{+}e^{-}\to J/\psi+c\bar{c} the relativistic correction is tiny and negligible. The physical reason for the above difference between exclusive and inclusive processes largely lies in the fact that in the exclusive process the relative momentum between quarks in charmonium substantially reduces the virtuality of the gluon that converts into a charm quark pair, but this is not the case for the inclusive process, in which the charm quark fragmentation c→J/ψ+cc\to J/\psi+c is significant, and QCD radiative corrections can be more essential.Comment: Version to appear in PRD. In the summary an explicit statement added: "for the J/\psi eta_c cross section the relativistic correction alone gives an enhancement factor of 1.7 while the combination of relativistic correction with QCD radiative correction results in a much larger enhancement factor of 9". One reference added. A few typos correcte

    Search for excited charmonium states in e+e−e^+e^- Annihilation at s=10.6\sqrt{s}=10.6 GeV

    Full text link
    We suggest searching for excited charmonium states in e+e−e^+e^- annihilation via double charmonium production at s=10.6\sqrt{s}=10.6 GeV with BB factories, based on a more complete leading order calculation including both QCD and QED contributions for various processes. In particular, for the C=+ states, the χc0(nP)\chi_{c0}(nP) (n=2,3) and ηc(mS)\eta_c(mS) (m=3,4) may have appreciable potentials to be observed; while for the C=- states, the ηchc\eta_ch_c production and especially the χc1hc\chi_{c1}h_c production might provide opportunities for observing the hch_c with higher statistics in the future. A brief discussion for the X(3940) observed in the double charmonium production is included.Comment: 13 pages and 8 figures in PRD version; QED contribution added; experimental and theoretical developments since 2004 summarized; references adde

    Bell Inequalities Classifying Bi-separable Three-qubit States

    Full text link
    We present a set of Bell inequalities that gives rise to a finer classification of the entanglement for tripartite systems. These inequalities distinguish three possible bi-separable entanglements for three-qubit states. The three Bell operators we employed constitute an external sphere of the separable cube.Comment: 8 page

    The Decay Properties of the 1^{-+} Hybrid State

    Full text link
    Within the framework of the QCD sum rules, we consider the three-point correlation function, work at the limit q^2 -> 0 and m_\pi -> 0, and pick out the singular term ~ {1\over q^2} to extract the pionic coupling constants of the 1^{-+} hybrid meson. Then we calculate the decay widths of different modes. The decay width of the S-wave modes b_1 \pi, f_1\pi increases quickly as the hybrid meson mass and decay momentum increase. But for the low mass hybrid meson around 1.6 GeV, the P-wave decay mode \rho \pi is very important and its width is around 180 MeV, while the widths of \eta \pi and \eta^\prime \pi are strongly suppressed. We suggest the experimental search of \pi_1(1600) through the decay chains at BESIII: e^+e^- -> J/\psi(\psi') -> \pi_1 +\gamma or e^+e^- -> J/\psi(\psi') -> \pi_1 +\rho where the \pi_1 state can be reconstructed through the decay modes \pi_1 -> \rho\pi -> \pi^+\pi^-\pi^0 or \pi_1 -> f_1(1285)\pi^0. It is also interesting to look for \pi_1 using the available BELLE/BABAR data through the process e^+e^- -> \gamma^\ast -> \rho\pi_1, b_1\pi_1, \gamma \pi_1 etc.Comment: one reference correcte

    Non-Abelian vortices in the emergent U(2) gauge theory of the Hubbard model

    Full text link
    By the spin-fermion formula, the Hubbard model on the honeycomb lattice is represented by a U(2) gauge theory in the mean field method, non-Abelian vortex solutions are constructed based on this theory. The quantization condition shows that the magnetic flux quanta are half-integer. There are 2k2k bosonic zero modes for kk winding vortices. For the fermions, there are 2 zero energy states (ZESs) corresponding to the single elementary vortex. In the vortex core and on the edge, the system are in the semi-metal phase with a spin gap and in the insulator phase with N\'eel order phase, and can be mapped to the superconductor in class A and CI, respectively.Comment: 4pages, 2table
    • …
    corecore