4,535 research outputs found
Radiative Corrections to Democratic Lepton Mixing
A new ansatz of democratic lepton mixing is proposed at the GUT scale and the
radiative corrections to its phenomenological consequences are calculated at
the electroweak scale. We demonstrate that it is possible to obtain the
experimentally favored results for both neutrino masses and lepton flavor
mixing angles from this ansatz, provided the neutrino Yukawa coupling matrix
takes a specific nontrivial pattern. The seesaw threshold effects play a
significant role in the running of relevant physical quantities.Comment: 10 pages (1 table, 2 figures). More discussions added. Phys. Lett. B
in pres
Properties of Catlin's reduced graphs and supereulerian graphs
A graph is called collapsible if for every even subset ,
there is a spanning connected subgraph of such that is the set of
vertices of odd degree in . A graph is the reduction of if it is
obtained from by contracting all the nontrivial collapsible subgraphs. A
graph is reduced if it has no nontrivial collapsible subgraphs. In this paper,
we first prove a few results on the properties of reduced graphs. As an
application, for 3-edge-connected graphs of order with for any where are given, we show how such graphs
change if they have no spanning Eulerian subgraphs when is increased from
to 10 then to
Transmit design for MIMO wiretap channel with a malicious jammer
In this paper, we consider the transmit design for multi-input multi-output
(MIMO) wiretap channel including a malicious jammer. We first transform the
system model into the traditional three-node wiretap channel by whitening the
interference at the legitimate user. Additionally, the eavesdropper channel
state information (ECSI) may be fully or statistically known, even unknown to
the transmitter. Hence, some strategies are proposed in terms of different
levels of ECSI available to the transmitter in our paper. For the case of
unknown ECSI, a target rate for the legitimate user is first specified. And
then an inverse water-filling algorithm is put forward to find the optimal
power allocation for each information symbol, with a stepwise search being used
to adjust the spatial dimension allocated to artificial noise (AN) such that
the target rate is achievable. As for the case of statistical ECSI, several
simulated channels are randomly generated according to the distribution of
ECSI. We show that the ergodic secrecy capacity can be approximated as the
average secrecy capacity of these simulated channels. Through maximizing this
average secrecy capacity, we can obtain a feasible power and spatial dimension
allocation scheme by using one dimension search. Finally, numerical results
reveal the effectiveness and computational efficiency of our algorithms.Comment: 2015 IEEE 81st Vehicular Technology Conference (VTC Spring
Physical Layer Service Integration in 5G: Potentials and Challenges
High transmission rate and secure communication have been identified as the
key targets that need to be effectively addressed by fifth generation (5G)
wireless systems. In this context, the concept of physical-layer security
becomes attractive, as it can establish perfect security using only the
characteristics of wireless medium. Nonetheless, to further increase the
spectral efficiency, an emerging concept, termed physical-layer service
integration (PHY-SI), has been recognized as an effective means. Its basic idea
is to combine multiple coexisting services, i.e., multicast/broadcast service
and confidential service, into one integral service for one-time transmission
at the transmitter side. This article first provides a tutorial on typical
PHY-SI models. Furthermore, we propose some state-of-the-art solutions to
improve the overall performance of PHY-SI in certain important communication
scenarios. In particular, we highlight the extension of several concepts
borrowed from conventional single-service communications, such as artificial
noise (AN), eigenmode transmission etc., to the scenario of PHY-SI. These
techniques are shown to be effective in the design of reliable and robust
PHY-SI schemes. Finally, several potential research directions are identified
for future work.Comment: 12 pages, 7 figure
Artificial Noise-Aided Biobjective Transmitter Optimization for Service Integration in Multi-User MIMO Gaussian Broadcast Channel
This paper considers an artificial noise (AN)-aided transmit design for
multi-user MIMO systems with integrated services. Specifically, two sorts of
service messages are combined and served simultaneously: one multicast message
intended for all receivers and one confidential message intended for only one
receiver and required to be perfectly secure from other unauthorized receivers.
Our interest lies in the joint design of input covariances of the multicast
message, confidential message and artificial noise (AN), such that the
achievable secrecy rate and multicast rate are simultaneously maximized. This
problem is identified as a secrecy rate region maximization (SRRM) problem in
the context of physical-layer service integration. Since this bi-objective
optimization problem is inherently complex to solve, we put forward two
different scalarization methods to convert it into a scalar optimization
problem. First, we propose to prefix the multicast rate as a constant, and
accordingly, the primal biobjective problem is converted into a secrecy rate
maximization (SRM) problem with quality of multicast service (QoMS) constraint.
By varying the constant, we can obtain different Pareto optimal points. The
resulting SRM problem can be iteratively solved via a provably convergent
difference-of-concave (DC) algorithm. In the second method, we aim to maximize
the weighted sum of the secrecy rate and the multicast rate. Through varying
the weighted vector, one can also obtain different Pareto optimal points. We
show that this weighted sum rate maximization (WSRM) problem can be recast into
a primal decomposable form, which is amenable to alternating optimization (AO).
Then we compare these two scalarization methods in terms of their overall
performance and computational complexity via theoretical analysis as well as
numerical simulation, based on which new insights can be drawn.Comment: 14 pages, 5 figure
Epiphyllous liverworts on rosette leaves of Ardisia species (Myrsinaceae) in China
Four species of Ardisia (Myrsinaceae, Magnoliopsida) with rosette or low-lying leaves in China (including Hong Kong) have been found to be the hosts for 12 species of epiphyllous liverworts which belong to 4 families and 9 genera. However, no obvious species-specific hostepiphyte relationship could be recognized
A Spatial Investigation of ƒÐ-Convergence in China
Using techniques of spatial econometrics, this paper investigates ƒÐ-convergence of provincial real per capita gross domestic product (GDP) in China. The empirical evidence concludes that spatial dependence across regions is strong enough to distort the traditional measure of ƒÐ-convergence. This study focuses on the variation of per capita GDP that is dependent on the development processes of neighboring provinces and cities. This refinement of the conditional ƒÐ-convergence model specification allows for analysis of spatial dependence in the mean and variance. The corrected measure of ƒÐ-convergence in China indicates a lower level of dispersion in the economic development process. This implies a smaller divergence in real per capita GDP, although convergence across regions is still a challenging goal to achieve in the 2000s.ƒÐ-Convergence, Moran's index, spatial dependence, spatial lag
- …