2 research outputs found

    Development and validation of ferroptosis-related lncRNAs signature for hepatocellular carcinoma

    Get PDF
    Background Hepatocellular carcinoma (HCC) with high heterogeneity is one of the most frequent malignant tumors throughout the world. However, there is no research to establish a ferroptosis-related lncRNAs (FRlncRNAs) signature for the patients with HCC. Therefore, this study was designed to establish a novel FRlncRNAs signature to predict the survival of patients with HCC. Method The expression profiles of lncRNAs were acquired from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database. FRlncRNAs co-expressed with ferroptosis-related genes were utilized to establish a signature. Cox regression was used to construct a novel three FRlncRNAs signature in the TCGA cohort, which was verified in the GEO validation cohort. Results Three differently expressed FRlncRNAs significantly associated with prognosis of HCC were identified, which composed a novel FRlncRNAs signature. According to the FRlncRNAs signature, the patients with HCC could be divided into low- and high-risk groups. Patients with HCC in the high-risk group displayed shorter overall survival (OS) contrasted with those in the low-risk group (P  1, P  1, P < 0.05). Meanwhile, it was also a useful tool in predicting survival among each stratum of gender, age, grade, stage, and etiology,etc. This signature was connected with immune cell infiltration (i.e., Macrophage, Myeloid dendritic cell, and Neutrophil cell, etc.) and immune checkpoint blockade targets (PD-1, CTLA-4, and TIM-3). Conclusion The three FRlncRNAs might be potential therapeutic targets for patients, and their signature could be utilized for prognostic prediction in HCC

    Development of Prognostic Indicator Based on Autophagy-Related lncRNA Analysis in Colon Adenocarcinoma

    No full text
    There were no systematic researches about autophagy-related long noncoding RNA (lncRNA) signatures to predict the survival of patients with colon adenocarcinoma. It was necessary to set up corresponding autophagy-related lncRNA signatures. The expression profiles of lncRNAs which contained 480 colon adenocarcinoma samples were obtained from The Cancer Genome Atlas (TCGA) database. The coexpression network of lncRNAs and autophagy-related genes was utilized to select autophagy-related lncRNAs. The lncRNAs were further screened using univariate Cox regression. In addition, Lasso regression and multivariate Cox regression were used to develop an autophagy-related lncRNA signature. A risk score based on the signature was established, and Cox regression was used to test whether it was an independent prognostic factor. The functional enrichment of autophagy-related lncRNAs was visualized using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes. Ten prognostic autophagy-related lncRNAs (AC027307.2, AC068580.3, AL138756.1, CD27-AS1, EIF3J-DT, LINC01011, LINC01063, LINC02381, AC073896.3, and SNHG16) were identified to be significantly different, which made up an autophagy-related lncRNA signature. The signature divided patients with colon adenocarcinoma into the low-risk group and the high-risk group. A risk score based on the signature was a significantly independent factor for the patients with colon adenocarcinoma (HR=1.088, 95%CI=1.057−1.120; P<0.001). Additionally, the ten lncRNAs were significantly enriched in autophagy process, metabolism, and tumor classical pathways. In conclusion, the ten autophagy-related lncRNAs and their signature might be molecular biomarkers and therapeutic targets for the patients with colon adenocarcinoma
    corecore