46 research outputs found
Reconstructing propagation networks with natural diversity and identifying hidden sources
Our ability to uncover complex network structure and dynamics from data is
fundamental to understanding and controlling collective dynamics in complex
systems. Despite recent progress in this area, reconstructing networks with
stochastic dynamical processes from limited time series remains to be an
outstanding problem. Here we develop a framework based on compressed sensing to
reconstruct complex networks on which stochastic spreading dynamics take place.
We apply the methodology to a large number of model and real networks, finding
that a full reconstruction of inhomogeneous interactions can be achieved from
small amounts of polarized (binary) data, a virtue of compressed sensing.
Further, we demonstrate that a hidden source that triggers the spreading
process but is externally inaccessible can be ascertained and located with high
confidence in the absence of direct routes of propagation from it. Our approach
thus establishes a paradigm for tracing and controlling epidemic invasion and
information diffusion in complex networked systems.Comment: 20 pages and 5 figures. For Supplementary information, please see
http://www.nature.com/ncomms/2014/140711/ncomms5323/full/ncomms5323.html#
Emergence of communities and diversity in social networks
Communities are common in complex networks and play a significant role in the functioning of social, biological, economic,
and technological systems. Despite widespread interest in detecting community structures in complex networks and exploring the
effect of communities on collective dynamics, a deep understanding of the emergence and prevalence of communities in social
networks is still lacking. Addressing this fundamental problem
is of paramount importance in understanding, predicting, and
controlling a variety of collective behaviors in society. An elusive question is how communities with common internal properties arise in social networks with great individual diversity. Here,
we answer this question using the ultimatum game, which has
been a paradigm for characterizing altruism and fairness. We
experimentally show that stable local communities with different
internal agreements emerge spontaneously and induce social
diversity into networks, which is in sharp contrast to populations with random interactions. Diverse communities and social
norms come from the interaction between responders with inherent heterogeneous demands and rational proposers via local connections, where the former eventually become the community
leaders. This result indicates that networks are significant in the
emergence and stabilization of communities and social diversity.
Our experimental results also provide valuable information about
strategies for developing network models and theories of evolutionary games and social dynamics.This work was supported by the National Nature Science Foundation of China under Grants 61573064, 71631002, 71401037, and 11301032; the Fundamental Research Funds for the Central Universities and Beijing Nova Programme; and the Natural Sciences and Engineering Research Council of Canada (Individual Discovery Grant). The Boston University work was supported by NSF Grants PHY-1505000, CMMI-1125290, and CHE- 1213217, and by Defense Threat Reduction Agency Grant HDTRA1-14-1-0017, and Department of Energy Contract DE-AC07-05Id14517. (61573064 - National Nature Science Foundation of China; 71631002 - National Nature Science Foundation of China; 71401037 - National Nature Science Foundation of China; 11301032 - National Nature Science Foundation of China; Fundamental Research Funds for the Central Universities and Beijing Nova Programme; Natural Sciences and Engineering Research Council of Canada (Individual Discovery Grant); PHY-1505000 - NSF; CMMI-1125290 - NSF; CHE-1213217 - NSF; HDTRA1-14-1-0017 - Defense Threat Reduction Agency; DE-AC07-05Id14517 - Department of Energy)Published versio
The utilization of paper-level classification system on the evaluation of journal impact
CAS Journal Ranking, a ranking system of journals based on the bibliometric
indicator of citation impact, has been widely used in meso and macro-scale
research evaluation in China since its first release in 2004. The ranking's
coverage is journals which contained in the Clarivate's Journal Citation
Reports (JCR). This paper will mainly introduce the upgraded version of the
2019 CAS journal ranking. Aiming at limitations around the indicator and
classification system utilized in earlier editions, also the problem of
journals' interdisciplinarity or multidisciplinarity, we will discuss the
improvements in the 2019 upgraded version of CAS journal ranking (1) the CWTS
paper-level classification system, a more fine-grained system, has been
utilized, (2) a new indicator, Field Normalized Citation Success Index (FNCSI),
which ia robust against not only extremely highly cited publications, but also
the wrongly assigned document type, has been used, and (3) the calculation of
the indicator is from a paper-level. In addition, this paper will present a
small part of ranking results and an interpretation of the robustness of the
new FNCSI indicator. By exploring more sophisticated methods and indicators,
like the CWTS paper-level classification system and the new FNCSI indicator,
CAS Journal Ranking will continue its original purpose for responsible research
evaluation
An Explorative Study on Document Type Assignment of Review Articles in Web of Science, Scopus and Journals' Website
Accurately assigning the document type of review articles in citation index
databases like Web of Science(WoS) and Scopus is important. This study aims to
investigate the document type assignation of review articles in web of Science,
Scopus and Journals' website in a large scale. 27,616 papers from 160 journals
from 10 review journal series indexed in SCI are analyzed. The document types
of these papers labeled on journals' website, and assigned by WoS and Scopus
are retrieved and compared to determine the assigning accuracy and identify the
possible reasons of wrongly assigning. For the document type labeled on the
website, we further differentiate them into explicit review and implicit review
based on whether the website directly indicating it is review or not. We find
that WoS and Scopus performed similarly, with an average precision of about 99%
and recall of about 80%. However, there were some differences between WoS and
Scopus across different journal series and within the same journal series. The
assigning accuracy of WoS and Scopus for implicit reviews dropped
significantly. This study provides a reference for the accuracy of document
type assigning of review articles in WoS and Scopus, and the identified pattern
for assigning implicit reviews may be helpful to better labeling on website,
WoS and Scopus
Reconstructing direct and indirect interactions in networked public goods game
W.-X.W. was supported by NNSFC under Grant No. 61573064 and Grant No. 61074116, Beijing Nova Programme, China, and the Fundamental Research Funds for the Central Universities. Y.-C.L. was supported by ARO under Grant W911NF-14-1-0504.Peer reviewedPublisher PD
Universal data-based method for reconstructing complex networks with binary-state dynamics
ACKNOWLEDGMENTS W.-X.W. was supported by NSFC under Grant No. 61573064, No. 61074116, and No. 71631002, as well as the Fundamental Research Funds for the Central Universities, Beijing Nova Programme. Y.-C.L. was supported by ARO under Grant No. W911NF-14-1-0504. W.-X.W. designed research; J.L. and Z.S. performed research; all analyzed data; J.L., W.-X.W., and Y.-C.L. wrote the paper; all edited the paper. The authors declare no competing financial interests.Peer reviewedPublisher PD
Increasing trend of scientists to switch between topics
We analyze the publication records of individual scientists, aiming to
quantify the topic switching dynamics of scientists and its influence. For each
scientist, the relations among her publications are characterized via shared
references. We find that the co-citing network of the papers of a scientist
exhibits a clear community structure where each major community represents a
research topic. Our analysis suggests that scientists tend to have a narrow
distribution of the number of topics. However, researchers nowadays switch more
frequently between topics than those in the early days. We also find that high
switching probability in early career (<12y) is associated with low overall
productivity, while it is correlated with high overall productivity in latter
career. Interestingly, the average citation per paper, however, is in all
career stages negatively correlated with the switching probability. We propose
a model with exploitation and exploration mechanisms that can explain the main
observed features.Comment: 37 pages, 21 figure