2,201 research outputs found

    Energy-Efficient Antenna Selection and Power Allocation for Large-Scale Multiple Antenna Systems with Hybrid Energy Supply

    Full text link
    The combination of energy harvesting and large-scale multiple antenna technologies provides a promising solution for improving the energy efficiency (EE) by exploiting renewable energy sources and reducing the transmission power per user and per antenna. However, the introduction of energy harvesting capabilities into large-scale multiple antenna systems poses many new challenges for energy-efficient system design due to the intermittent characteristics of renewable energy sources and limited battery capacity. Furthermore, the total manufacture cost and the sum power of a large number of radio frequency (RF) chains can not be ignored, and it would be impractical to use all the antennas for transmission. In this paper, we propose an energy-efficient antenna selection and power allocation algorithm to maximize the EE subject to the constraint of user's quality of service (QoS). An iterative offline optimization algorithm is proposed to solve the non-convex EE optimization problem by exploiting the properties of nonlinear fractional programming. The relationships among maximum EE, selected antenna number, battery capacity, and EE-SE tradeoff are analyzed and verified through computer simulations.Comment: IEEE Globecom 2014 Selected Areas in Communications Symposium-Green Communications and Computing Trac

    Geometric phases of d-wave vortices in a model of lattice fermions

    Full text link
    We study the local and topological features of Berry phases associated with the adiabatic transport of vortices in a d-wave superconductor of lattice fermions. At half filling, where the local Berry curvature must vanish due to symmetries, the phase associated with the exchange of two vortices is found to vanish as well, implying that vortices behave as bosons. Away from half filling, and in the limit where the magnetic length is large compared to the lattice constant, the local Berry curvature gives rise to an intricate flux pattern within the large magnetic unit cell. This renders the Berry phase associated with an exchange of two vortices highly path dependent. However, it is shown that "statistical" fluxes attached to the vortex positions are still absent. Despite the complicated profile of the Berry curvature away from half filling, we show that the average flux density associated with this curvature is tied to the average particle density. This is familiar from dual theories of bosonic systems, even though in the present case, the underlying particles are fermions.Comment: 5 pages, 1 figur

    GreenDelivery: Proactive Content Caching and Push with Energy-Harvesting-based Small Cells

    Full text link
    The explosive growth of mobile multimedia traffic calls for scalable wireless access with high quality of service and low energy cost. Motivated by the emerging energy harvesting communications, and the trend of caching multimedia contents at the access edge and user terminals, we propose a paradigm-shift framework, namely GreenDelivery, enabling efficient content delivery with energy harvesting based small cells. To resolve the two-dimensional randomness of energy harvesting and content request arrivals, proactive caching and push are jointly optimized, with respect to the content popularity distribution and battery states. We thus develop a novel way of understanding the interplay between content and energy over time and space. Case studies are provided to show the substantial reduction of macro BS activities, and thus the related energy consumption from the power grid is reduced. Research issues of the proposed GreenDelivery framework are also discussed.Comment: 15 pages, 5 figures, accepted by IEEE Communications Magazin
    • …
    corecore