381 research outputs found

    Gadd45a deletion aggravates hematopoietic stem cell dysfunction in ATM-deficient mice

    Get PDF
    Ataxia telangiectasia mutated (ATM) kinase plays an essential role in the maintenance of genomic stability. ATM-deficient (ATM(−/−)) mice exhibit hematopoietic stem cell (HSC) dysfunction and a high incidence of lymphoma. Gadd45a controls cell cycle arrest, apoptosis and DNA repair, and is involved in the ATM-p53 mediated DNA damage response. However, the role of Gadd45a in regulating the functionality of ATM(−/−) HSCs is unknown. Here we report that Gadd45a deletion did not rescue the defects of T-cells and B-cells development in ATM(−/−) mice. Instead, ATM and Gadd45a double knockout (ATM(−/−) Gadd45a(−/−)) HSCs exhibited an aggravated defect in long-term self-renewal capacity compared to ATM(−/−) HSCs in HSC transplantation experiments. Further experiments revealed that the aggravated defect of ATM(−/−) Gadd45a(−/−) HSCs was due to a reduction of cell proliferation, associated with an accumulation of DNA damage and subsequent activation of DNA damage response including an up-regulation of p53-p21 signaling pathway. Additionally, ATM(−/−) Gadd45a(−/−) mice showed an increased incidence of hematopoietic malignancies, as well as an increased rate of metastasis than ATM(−/−) mice. In conclusion, Gadd45a deletion aggravated the DNA damage accumulation, which subsequently resulted in a further impaired self-renewal capacity and an increased malignant transformation in ATM(−/−) HSCs

    Adaptive Fuzzy Output Regulation for Formation Control of Unmanned Surface Vehicles

    Get PDF

    ELISA for Aging Biomarkers Induced by Telomere Dysfunction in Human Plasma

    Get PDF
    Background. We identified cathelicidin related antimicrobial protein (CRAMP) secreted from telomere dysfunctional bone marrow cells of late generation telomerase knockout mice (G4mTerc−/−), increased in blood and various tissues. It can represented human aging and disease. The main aim of this study is to investigate the sensitive direct enzyme-linked immunosorbent assay (ELISA) method to analyze the human aging and disease in plasma and the detailed methods to quantify the direct ELISA of these aging biomarkers. Methods. Telomere lengths of 50 healthy persons are measured with real-time PCR in blood cells. Plasma samples from all subjects are analyzed using direct ELISA. Results. From 25 years old person to 78 years, the telomere length becomes shorter during aging. In blood plasma, the expression levels of CRAMP increases during human aging. There is the reverse correspondence between the telomere length and the plasma CRAMP level. We also find that the fresh plasma, the frozen plasma which thawed less than 3 times, and the plasma kept in the room temperature less than 3 hours are better for the ELISA analyze of CRAMP in the plasma. Conclusion. This CRAMP ELISA could become a powerful tool for investigating the relationship between human aging and telomere length shortening

    Sod2 haploinsufficiency does not accelerate aging of telomere dysfunctional mice

    Get PDF
    Telomere shortening represents a causal factor of cellular senescence. At the same time, several lines of evidence indicate a pivotal role of oxidative DNA damage for the aging process in vivo. A causal connection between the two observations was suggested by experiments showing accelerated telomere shorting under conditions of oxidative stress in cultured cells, but has never been studied in vivo. We therefore have analysed whether an increase in mitochondrial derived oxidative stress in response to heterozygous deletion of superoxide dismutase (Sod2+/-) would exacerbate aging phenotypes in telomere dysfunctional (mTerc-/-) mice. Heterozygous deletion of Sod2 resulted in reduced SOD2 protein levels and increased oxidative stress in aging telomere dysfunctional mice, but this did not lead to an increase in basal levels of oxidative nuclear DNA damage, an accumulation of nuclear DNA breaks, or an increased rate of telomere shortening in the mice. Moreover, heterozygous deletion of Sod2 did not accelerate the depletion of stem cells and the impairment in organ maintenance in aging mTerc-/- mice. In agreement with these observations, Sod2 haploinsufficiency did not lead to a further reduction in lifespan of mTerc-/- mice. Together, these results indicate that a decrease in SOD2-dependent antioxidant defence does not exacerbate aging in the context of telomere dysfunction

    Transferrin receptor 1-mediated iron uptake plays an essential role in hematopoiesis

    Get PDF
    Transferrin receptor 1 (Tfr1) mediates the endocytosis of diferric transferrin in order to transport iron, and Tfr1 has been suggested to play an important role in hematopoiesis. To study the role of Tfr1 in hematopoiesis, we generated hematopoietic stem cell (HSC) specific Tfr1 knockout mice. We found that Tfr1 conditional knockout mice reached full term but died within one week of birth. Further analyses revealed that Tfr1-deficient HSC had impaired development of all hematopoietic progenitors except thrombocytes and B lymphocytes. In addition, Tfr1-deficient cells had cellular iron deficiency, which blocked the proliferation and differentiation of hematopoietic precursor cells, attenuated the commitment of hematopoietic lineages, and reduced the regeneration potential of HSC. Notably, hemin rescued the colony-forming capacity of Tfr1-deficient HSC, whereas expressing a mutant Tfr1 that lacks the protein’s iron-transporting capacity failed to rescue hematopoiesis. These findings provide direct evidence that Tfr1 is essential for hematopoiesis through binding diferric transferrin to supply iron to cells

    Lifestyle impacts on the aging-associated expression of biomarkers of DNA damage and telomere dysfunction in human blood: Measuring the influence of lifestyle on aging

    Get PDF
    Cellular aging is characterised by telomere shortening, which can lead to uncapping of chromosome ends (telomere dysfunction) and that activation of DNA damage responses. There is some evidence the DNA damage accumulates during human aging and that lifestyle factors contribute to the accumulation of DNA damage. Recent studies have identified a set of serum markers that are induced by telomere dysfunction and DNA damage and these markers showed an increased expression in blood during human aging. Here, we investigated the influence of lifestyle factors (such as exercise, smoking, body mass) on the aging associated expression of serum markers of DNA damage (CRAMP, EF-1α, Stathmin, n-acetyl-glucosaminidase, and chitinase) in comparison to other described markers of cellular aging (p16INK4a upregulation and telomere shortening) in human peripheral blood. The study shows that lifestyle factors have an age-independent impact on the expression level of biomarkers of DNA damage. Smoking and increased body mass indices were associated with elevated levels of biomarkers of DNA damage independent of the age of the individuals. In contrast, exercise was associated with an age-independent reduction in the expression of biomarkers of DNA damage in human blood. The expression of biomarkers of DNA damage correlated positively with p16INK4a expression and negatively with telomere length in peripheral blood T-lymphocytes. Together, these data provide experimental evidence that both aging and lifestyle impact on the accumulation of DNA damage during human aging

    Deletion of a flippase subunit Tmem30a in hematopoietic cells impairs mouse fetal liver erythropoiesis

    Get PDF
    Transmembrane protein 30A (Tmem30a) is the β-subunit of P4-ATPases which function as flippase that transports aminophospholipids such as phosphatidylserine from the outer to the inner leaflets of the plasma membrane to maintain asymmetric distribution of phospholipids. It has been documented that deficiency of Tmem30a led to exposure of phosphatidylserine. However, the role of Tmem30a in vivo remains largely unknown. Here we found that Vav-Cre-driven conditional deletion of Tmem30a in hematopoietic cells led to embryonic lethality due to severe anemia by embryonic day 16.5. The numbers of erythroid colonies and erythroid cells were decreased in the Tmem30a deficient fetal liver. This was accompanied by increased apoptosis of erythroid cells. Confocal microscopy analysis revealed an increase of localization of erythropoietin receptor to areas of membrane raft microdomains in response to erythropoietin stimulation in Ter119−erythroid progenitors, which was impaired in Tmem30a deficient cells. Moreover, erythropoietin receptor (EPOR)-mediated activation of the STAT5 pathway was significantly reduced in Tmem30a deficient fetal liver cells. Consistently, knockdown of TMEM30A in human CD34+ cells also impaired erythropoiesis. Our findings demonstrate that Tmem30a plays a critical role in erythropoiesis by regulating the EPOR signaling pathway through the formation of membrane rafts in erythroid cells
    corecore