979 research outputs found

    Model and Integrate Medical Resource Available Times and Relationships in Verifiably Correct Executable Medical Best Practice Guideline Models (Extended Version)

    Full text link
    Improving patient care safety is an ultimate objective for medical cyber-physical systems. A recent study shows that the patients' death rate is significantly reduced by computerizing medical best practice guidelines. Recent data also show that some morbidity and mortality in emergency care are directly caused by delayed or interrupted treatment due to lack of medical resources. However, medical guidelines usually do not provide guidance on medical resource demands and how to manage potential unexpected delays in resource availability. If medical resources are temporarily unavailable, safety properties in existing executable medical guideline models may fail which may cause increased risk to patients under care. The paper presents a separately model and jointly verify (SMJV) architecture to separately model medical resource available times and relationships and jointly verify safety properties of existing medical best practice guideline models with resource models being integrated in. The SMJV architecture allows medical staff to effectively manage medical resource demands and unexpected resource availability delays during emergency care. The separated modeling approach also allows different domain professionals to make independent model modifications, facilitates the management of frequent resource availability changes, and enables resource statechart reuse in multiple medical guideline models. A simplified stroke scenario is used as a case study to investigate the effectiveness and validity of the SMJV architecture. The case study indicates that the SMJV architecture is able to identify unsafe properties caused by unexpected resource delays.Comment: full version, 12 page

    Implementation of Real-Time Machining Process Control Based on Fuzzy Logic in a New STEP-NC Compatible System

    Get PDF
    Implementing real-time machining process control at shop floor has great significance on raising the efficiency and quality of product manufacturing. A framework and implementation methods of real-time machining process control based on STEP-NC are presented in this paper. Data model compatible with ISO 14649 standard is built to transfer high-level real-time machining process control information between CAPP systems and CNC systems, in which EXPRESS language is used to define new STEP-NC entities. Methods for implementing real-time machining process control at shop floor are studied and realized on an open STEP-NC controller, which is developed using object-oriented, multithread, and shared memory technologies conjunctively. Cutting force at specific direction of machining feature in side mill is chosen to be controlled object, and a fuzzy control algorithm with self-adjusting factor is designed and embedded in the software CNC kernel of STEP-NC controller. Experiments are carried out to verify the proposed framework, STEP-NC data model, and implementation methods for real-time machining process control. The results of experiments prove that real-time machining process control tasks can be interpreted and executed correctly by the STEP-NC controller at shop floor, in which actual cutting force is kept around ideal value, whether axial cutting depth changes suddenly or continuously

    Abnormal Shape Mould Winding

    Get PDF
    AbstractA theory of composite material patch winding is proposed to determine the winding trajectory with a meshed data model. Two different conditions are considered in this study. One is Bridge condition on the concave surface and the other is Slip line condition in the process of patch winding. This paper presents the judgment principles and corresponding solutions by applying differential geometry theory and space geometry theory. To verify the feasibility of the patch winding method, the winding control code is programmed. Furthermore, the winding experiments on an airplane inlet and a vane are performed. From the experiments, it shows that the patch winding theory has the advantages of flexibility, easy design and application

    Dasatinib-loaded Albumin Nanoparticles Possess Diminished Endothelial Cell Barrier Disruption and Retain Potent Anti-Leukemia Cell Activity

    Get PDF
    Dasatinib (DAS), a second-generation tyrosine kinase inhibitor, is highly effective in treating chronic myeloid leukemia and Philadelphia chromosome-positive acute lymphoblastic leukemia. However, its clinical use is limited due to serious adverse effects. DAS can disrupt endothelial barrier integrity and increase endothelial permeability which may cause peripheral edema and pleural effusion. Albumin nanoparticles (NPs) as a drug carrier may serve as a useful tool for cell-selective drug delivery to reduce DAS-induced endothelial hyperpermeability and maintain endothelial barrier integrity. In this study, we reported that DAS-loaded NPs exhibited potent anti-leukemia efficacy as DAS alone. Importantly, albumin NPs as a drug carrier markedly reduced DAS-induced endothelial hyperpermeability by restraining the inhibition of Lyn kinase signaling pathway in endothelial cells. Therefore, albumin NPs could be a potential tool to improve anti-leukemia efficacy of DAS through its cell-selective effects

    Deeply Virtual Compton Scattering at Future Electron-Ion Colliders

    Full text link
    The study of hadronic structure has been carried out for many years. Generalized parton distribution functions (GPDs) give broad information on the internal structure of hadrons. Combining GPDs and high-energy scattering experiments, we expect yielding three-dimensional physical quantities from experiments. Deeply Virtual Compton Scattering (DVCS) process is a powerful tool to study GPDs. It is one of the important experiments of Electron Ion Collider (EIC) and Electron ion collider at China (EicC) in the future. In the initial stage, the proposed EicC will have 3∼53 \sim 5 GeV polarized electrons on 12∼2512 \sim 25 GeV polarized protons, with luminosity up to 1∼2×10331 \sim 2 \times 10^{33}cm−2^{-2}s−1^{-1}. EIC will be constructed in coming years, which will cover the variable c.m. energies from 30 to 50 GeV, with the luminosity about 1033∼103410^{33} \sim 10^{34}cm−2^{-2}s−1^{-1}. In this work we present a detailed simulation of DVCS to study the feasibility of experiments at EicC and EIC. Referring the method used by HERMES Collaboration, and comparing the model calculations with pseudo data of asymmetries attributed to the DVCS, we obtained a model-dependent constraint on the total angular momentum of up and down quarks in the proton.Comment: 12 pages, 18 figures, 3 Table

    Improvements on Recommender System based on Mathematical Principles

    Full text link
    In this article, we will research the Recommender System's implementation about how it works and the algorithms used. We will explain the Recommender System's algorithms based on mathematical principles, and find feasible methods for improvements. The algorithms based on probability have its significance in Recommender System, we will describe how they help to increase the accuracy and speed of the algorithms. Both the weakness and the strength of two different mathematical distance used to describe the similarity will be detailed illustrated in this article
    • …
    corecore