134 research outputs found
Bayesian Estimation of the Inbreeding Coefficient for Single Nucleotide Polymorphism Using Complex Survey Data
In genome-wide association studies (GWAS), single nucleotide polymorphism (SNP) is often used as a genetic marker to study gene-disease association. Some large scale health sample surveys have recently started collecting genetic data. There is now growing interest in developing statistical procedures using genetic survey data. This calls for innovative statistical methods that incorporate both genetic and statistical sampling.
Under simple random sampling, the traditional estimator of the inbreeding coefficient is given by 1 - (number of observed heterozygotes) / (number of expected heterozygotes). Genetic data quality control reports published by the National Health and Nutrition Examination Survey (NHANES) and the Health and Retirement Study (HRS) use this simple estimator, which serves as a reasonable quality control tool to identify problems such as genotyping error. There is, however, a need to improve on this estimator by considering different features of the complex survey design. The main goal of this dissertation is to fill in this important research gap. First, a design-based estimator and its associated jackknife standard error estimator are proposed. Secondly, a hierarchical Bayesian methodology is developed using the effective sample size and genotype count. Lastly, a Bayesian pseudo-empirical likelihood estimator is proposed using the expected number of heterozygotes in the estimating equation as a constraint when maximizing the pseudo-empirical likelihood. One of the advantages of the proposed Bayesian methodology is that the prior distribution can be used to restrict the parameter space induced by the general inbreeding model.
The proposed estimators are evaluated using Monte Carlo simulation studies. Moreover, the proposed estimates of the inbreeding coefficients of SNPs from APOC1 and BDNF genes are compared using the data from the 2006 Health and Retirement Study
Neural Cognition and Affective Computing on Cyber Language
Characterized by its customary symbol system and simple and vivid expression patterns, cyber language acts as not only a tool for convenient communication but also a carrier of abundant emotions and causes high attention in public opinion analysis, internet marketing, service feedback monitoring, and social emergency management. Based on our multidisciplinary research, this paper presents a classification of the emotional symbols in cyber language, analyzes the cognitive characteristics of different symbols, and puts forward a mechanism model to show the dominant neural activities in that process. Through the comparative study of Chinese, English, and Spanish, which are used by the largest population in the world, this paper discusses the expressive patterns of emotions in international cyber languages and proposes an intelligent method for affective computing on cyber language in a unified PAD (Pleasure-Arousal-Dominance) emotional space
An analytic relation for the thickness of accretion flows
We take the vertical distribution of the radial and azimuthal velocity into
account in spherical coordinates, and find that the analytic relation
c_{s0}/(v_K \Theta) = [(\gamma -1)/(2\gamma)]^{1/2} is valid for both
geometrically thin and thick accretion flows, where c_{s0} is the sound speed
on the equatorial plane, v_K is the Keplerian velocity, \Theta is the
half-opening angle of the flow, and \gamma is the adiabatic index.Comment: 4 pages, 2 figures, accepted by Science in China Series
Nomogram for predicting invasive lung adenocarcinoma in small solitary pulmonary nodules
BackgroundThis study aimed to construct a clinical prediction model and nomogram to differentiate invasive from non-invasive pulmonary adenocarcinoma in solitary pulmonary nodules (SPNs).MethodWe analyzed computed tomography and clinical features as well as preoperative biomarkers in 1,106 patients with SPN who underwent pulmonary resection with definite pathology at Qilu Hospital of Shandong University between January 2020 and December 2021. Clinical parameters and imaging characteristics were analyzed using univariate and multivariate logistic regression analyses. Predictive models and nomograms were developed and their recognition abilities were evaluated using receiver operating characteristic (ROC) curves. The clinical utility of the nomogram was evaluated using decision curve analysis (DCA).ResultThe final regression analysis selected age, carcinoembryonic antigen, bronchus sign, lobulation, pleural adhesion, maximum diameter, and the consolidation-to-tumor ratio as associated factors. The areas under the ROC curves were 0.844 (95% confidence interval [CI], 0.817–0.871) and 0.812 (95% CI, 0.766–0.857) for patients in the training and validation cohorts, respectively. The predictive model calibration curve revealed good calibration for both cohorts. The DCA results confirmed that the clinical prediction model was useful in clinical practice. Bias-corrected C-indices for the training and validation cohorts were 0.844 and 0.814, respectively.ConclusionOur predictive model and nomogram might be useful for guiding clinical decisions regarding personalized surgical intervention and treatment options
Nomogram combining clinical and radiological characteristics for predicting the malignant probability of solitary pulmonary nodules measuring ≤ 2 cm
BackgroundAt present, how to identify the benign or malignant nature of small (≤ 2 cm) solitary pulmonary nodules (SPN) are an urgent clinical challenge. This retrospective study aimed to develop a clinical prediction model combining clinical and radiological characteristics for assessing the probability of malignancy in SPNs measuring ≤ 2 cm.MethodIn this study, we included patients with SPNs measuring ≤ 2 cm who underwent pulmonary resection with definite pathology at Qilu Hospital of Shandong University from January 2020 to December 2021. Clinical features, preoperative biomarker results, and computed tomography characteristics were collected. The enrolled patients were randomized at a ratio of 7:3 into a training cohort of 775 and a validation cohort of 331. The training cohort was used to construct the predictive model, while the validation cohort was used to test the model independently. Univariate and multivariate logistic regression analyses were performed to identify independent risk factors. The prediction model and nomogram were established based on the independent risk factors. The receiver operating characteristic (ROC) curve was used to evaluate the identification ability of the model. The calibration power was evaluated using the Hosmer–Lemeshow test and calibration curve. The clinical utility of the nomogram was also assessed by decision curve analysis (DCA).ResultA total of 1,106 patients were included in this study. Among them, the malignancy rate of SPNs was 85.08% (941/1,106). We finally identified the following six independent risk factors by logistic regression: age, carcinoembryonic antigen, nodule shape, calcification, maximum diameter, and consolidation-to-tumor ratio. The area under the ROC curve (AUC) for the training cohort was 0.764 (95% confidence interval [CI]: 0.714–0.814), and the AUC for the validation cohort was 0.729 (95% CI: 0.647–0.811), indicating that the prediction accuracy of nomogram was relatively good. The calibration curve of the predictive model also demonstrated a good calibration in both cohorts. DCA proved that the clinical prediction model was useful in clinical practice.ConclusionWe developed and validated a predictive model and nomogram for estimating the probability of malignancy in SPNs measuring ≤ 2 cm. With the application of predictive models, thoracic surgeons can make more rational clinical decisions while avoiding overtreatment and wasting medical resources
- …