35 research outputs found

    Ischemia-Induced Apoptosis of Intestinal Epithelial Cells Correlates with Altered Integrin Distribution and Disassembly of F-Actin Triggered by Calcium Overload

    Get PDF
    The present study examined intestinal epithelial cell (IEC) integrin distribution and disassembly of actin cytoskeleton in response to ischemia-anoxia. Protective effects of calcium channel blocker(CCB) were further examined to explore underlying mechanisms of cellular injury. Materials and Methods. Primary cultures of rat IECs and an in vitro model of ischemia/anoxia were established. IECs were exposed to ischemia/anoxia in the presence and absence of verapamil. The extent of exfoliation was determined using light microscopy while apoptosis rate was measured using flow cytometry. Changes in intracellular calcium, the distribution of integrins and the morphology of F-actin were assessed by confocal microscopy. Results. Detachment and apoptosis of IECs increased following ischemia/anoxia-induced injury. Treatment with verapamil inhibited the detachment and apoptosis. Under control conditions, the strongest fluorescent staining for integrins appeared on the basal surface of IECs while this re-distributed to the apical membrane in response to ischemic injury. Depolymerization of F-actin was also observed in the injured cells. Verapamil attenuated both changes of integrins and F-actin. Conclusions. Redistribution of integrins and disruption of F-actin under ischemia/anoxia injury is associated with IEC detachment and increased apoptosis. These events appeared to be triggered by an increase in Ca2+i suggesting a potential use for CCB in prevention and treatment of intestinal injury

    Comparison Study on the Estimation of the Spatial Distribution of Regional Soil Metal(loid)s Pollution Based on Kriging Interpolation and BP Neural Network

    No full text
    Soil pollution by metal(loid)s resulting from rapid economic development is a major concern. Accurately estimating the spatial distribution of soil metal(loid) pollution has great significance in preventing and controlling soil pollution. In this study, 126 topsoil samples were collected in Kunshan City and the geo-accumulation index was selected as a pollution index. We used Kriging interpolation and BP neural network methods to estimate the spatial distribution of arsenic (As) and cadmium (Cd) pollution in the study area. Additionally, we introduced a cross-validation method to measure the errors of the estimation results by the two interpolation methods and discussed the accuracy of the information contained in the estimation results. The conclusions are as follows: data distribution characteristics, spatial variability, and mean square errors (MSE) of the different methods showed large differences. Estimation results from BP neural network models have a higher accuracy, the MSE of As and Cd are 0.0661 and 0.1743, respectively. However, the interpolation results show significant skewed distribution, and spatial autocorrelation is strong. Using Kriging interpolation, the MSE of As and Cd are 0.0804 and 0.2983, respectively. The estimation results have poorer accuracy. Combining the two methods can improve the accuracy of the Kriging interpolation and more comprehensively represent the spatial distribution characteristics of metal(loid)s in regional soil. The study may provide a scientific basis and technical support for the regulation of soil metal(loid) pollution

    Large-Scale Direct Shear Test on Tire Slice Reinforced Crushed Concrete Particles

    No full text
    In order to study the mechanical properties of tire slices reinforced crushed concrete particles, a series of shear tests were carried out under the conditions of different vertical loads, different tire volume contents, and different shear rates. The test results show that the addition of tire slices can increase the internal friction angle and cohesion of concrete particles, therefore increase the shear strength of crushed concrete particles. The peak shear stress increases with the increase of vertical load. However, with the increase of the tire volume content, the reinforcement effect of the tire slices first increases and then decreases, and the effect is best when the tire volume content is 4%. Under the vertical load of 60 kPa, the reinforcement effect of 4% tire volume content is the best, and the peak shear stress increases by 46.53%. Additionally, the shear rate has a little effect on the peak shear stress. The larger the shear rate is, the smaller the shear displacement is and the faster the shear strength decreases. The smaller the shear rate is, the more gently the shear strength decreases

    Effects of Holding Time on the Sintering of Cemented Tungsten Carbide Powder and Bonding with High-Strength Steel Wire

    No full text
    Cemented tungsten carbide (WC-10Co) and high-strength (AISI 4340) steel were successfully bonded by hot compaction diffusion bonding at a low temperature. The effects of holding time (5-50 min) on microstructure and mechanical properties of the sintered carbides and bonding strengths of the dissimilar bilayered composite materials were examined. The results show that the mechanical properties of the carbides increase, but the bonding strength increases firstly and then decreases with the increase in holding time. The maximum density and hardness achieved are 95.92 and 99.5%, respectively. A transitional layer forms at the interface as a result of elemental interdiffusion. The depth of the layer increases with the increase in holding time. The optimal bonding time is determined to be 40 min at a temperature of 1200°C and a pressure 160 MPa, by which the maximum bonding strength of 204 MPa of the WC-10Co/4340 steel joints can be achieved

    Microstructural evaluation of WC and steel dissimilar bilayered composite obtained by spark plasma sintering

    No full text
    © 2020, Springer-Verlag London Ltd., part of Springer Nature. Spark plasma sintering (SPS) is a powerful technique for consolidating metal powders at a remarkably shorter time with excellent quality. We used this technique for sintering nanocrystalline WC10Co powders and simultaneously bonding with high-strength steel. A series of experiments were conducted in order to find out the optimised set of SPS controlling parameters. The effects of temperatures (1000 to 1150 °C, with a 50 °C interval) in sintering nanocrystalline WC10Co powders and their bonding phenomena with AISI4340 steel were examined at a constant pressure of 80 MPa and a holding time of 5 min. The full density of the carbide powders was achieved at a lower temperature compared with that of conventional techniques. A number of techniques were employed to evaluate the microstructural characteristics of WC and steel bilayered composite and their mechanical properties. For determining the bonding strength of the joint, a novel micro-tensile testing system was adopted. Since such investigation is the first of its kind, to the best knowledge of the authors, where SPS is used to join the tungsten carbide with the steel, this research is expected to provide a valuable future reference for fabricating dissimilar bilayered composite materials

    Analysis of Historical Sources of Heavy Metals in Lake Taihu Based on the Positive Matrix Factorization Model

    No full text
    Analysis of sediment grain sizes and heavy metal correlations in the western part of Lake Taihu shows that the grain size of the sediment is stable as a whole. With increasing depth, the grain size tends to decrease. Heavy metals such as Cr, Cd, Pd and Sr are strongly correlated and influence each other. Based on the positive matrix factorization (PMF) model, this study classified the origin of heavy metals in the sediments of western Lake Taihu into three major categories: Agricultural, industrial and geogenic. The contributions of the three heavy metal sources in each sample were analyzed and calculated. Overall, prior to the Chinese economic reform, the study area mainly practiced agriculture. The sources of heavy metals in the sediments were mostly of agricultural and geogenic origin, and remained relatively stable with contribution rates of 44.07 ± 11.84% (n = 30) and 35.67 ± 11.70% (n = 30), respectively. After the reform and opening up of China, as the economy experienced rapid development, industry and agriculture became the main sources of heavy metals in sediments, accounting for 56.99 ± 15.73% (n = 15) and 31.22 ± 14.31% (n = 15), respectively. The PMF model is convenient and efficient, and a good method to determine the origin of heavy metals in sediments

    Optimisation of sintering parameters for bonding nanocrystalline cemented tungsten carbide powder and solid high strength steel

    No full text
    © 2020, © 2020 Informa UK Limited, trading as Taylor & Francis Group. In this study we examined the effects of compaction pressure for bonding nanocrystalline cemented tungsten carbide (WC-10Co) and high-strength steel (AISI4340) and successfully fabricated a bilayered composite of ceramic and steel. The obtained results were compared with our previous studies, and then the optimised sintering conditions were suggested. The compaction pressure examined varied from 120–200 MPa at 1150°C for 20 min. The study shows that the change in experimental parameters has significant effects on both the sintering properties of nanocrystalline WC-10Co powders and their bonding with AISI4340 steel. The microstructure reveals a successful metallurgical bonding between ceramic and steel. Bonding temperature determines, to a great extent, the diffusion processes across the bonding interface and has found to be the most influential variable compared to sintering time and compaction pressure. The obtained average maximum bonding strength of the bimetal composite is 226 MPa, which is higher than that of previous studies

    MicroRNA miR-126 attenuates brain injury in septic rats via NF-κB signaling pathway

    No full text
    The purpose of this study was to investigate the impact and mechanism of microRNA miR-126 on brain injury induced by blood-brain barrier (BBB) damage in septic rats. We used cecal ligation and perforation (CLP) to create a rat model of sepsis. The experimental rats were randomly divided into Control group, CLP group, CLP + miR-NC group, CLP + miR-126 group and CLP + miR-126 + NF-κB pathway agonist (PMA) group. MiR-126 expressed in the brain tissue of CLP rats was down-regulated by qRT-PCR. Upregulation of miR-126 in CLP rats could improve brain injury and BBB marker protein level, reduce brain water content, Evans blue extravasation, inflammation, and excessive oxidative stress. This could also result in an inhibition of NF-κB signaling pathway activity. In conclusion, miR-126 overexpression can prevent brain injury caused by BBB damage via the inhibition of NF-κB signaling pathway activity

    Paeoniflorin Attenuates Inflammatory Pain by Inhibiting Microglial Activation and Akt-NF-κB Signaling in the Central Nervous System

    No full text
    Background/Aims: Paeoniflorin (PF) is known to have anti-inflammatory and paregoric effects, but the mechanism underlying its analgesic effect remains unclear. The aim of this study was to clarify the effect of PF on Freund’s complete adjuvant (CFA)-induced inflammatory pain and explore the underlying molecular mechanism. Methods: An inflammatory pain model was established by intraplantar injection of CFA in C57BL/6J mice. After intrathecal injection of PF daily for 8 consecutive days, thermal and mechanical withdrawal thresholds, the levels of inflammatory factors TNF-α, IL-1β and IL-6, microglial activity, and the expression of Akt-NF-κB signaling pathway in the spinal cord tissue were detected by animal ethological test, cell culture, enzyme-linked immunosorbent assay, immunofluorescence histochemistry, and western blot. Results: PF inhibited the spinal microglial activation in the CFA-induced pain model. The production of proinflammatory cytokines was decreased in the central nervous system after PF treatment both in vivo and in vitro. PF further displayed a remarkable effect on inhibiting the activation of Akt-NF-κB signaling pathway in vivo and in vitro. Conclusion: These results suggest that PF is a potential therapeutic agent for inflammatory pain and merits further investigation
    corecore