77 research outputs found

    Initial Velocity Effect on Acceleration Fall of a Spherical Particle through Still Fluid

    Get PDF
    A spherical particle’s acceleration fall through still fluid was investigated analytically and experimentally using the Basset-Boussinesq-Oseen equation. The relationship between drag coefficient and Reynolds number was studied, and various parameters in the drag coefficient equation were obtained with respect to the small, medium, and large Reynolds number zones. Next, some equations were used to derive the finite fall time and distance equations in terms of certain assumptions. A simple experiment was conducted to measure the fall time and distance for a spherical particle falling through still water. Sets of experimental data were used to validate the relationship between fall velocity, time, and distance. Finally, the initial velocity effect on the total fall time and distance was discussed with different terminal Reynolds numbers, and it was determined that the initial velocity plays a more important role in the falling motion for small terminal Reynolds numbers than for large terminal Reynolds number scenarios

    Carbohydrate antigen 125 in congestive heart failure: ready for clinical application?

    Get PDF
    Congestion is the permanent mechanism driving disease progression in patients with acute heart failure (AHF) and also is an important treatment target. However, distinguishing between the two different phenotypes (intravascular congestion and tissue congestion) for personalized treatment remains challenging. Historically, carbohydrate antigen 125 (CA125) has been a frequently used biomarker for the screening, diagnosis, and prognosis of ovarian cancer. Interestingly, CA125 is highly sensitive to tissue congestion and shows potential for clinical monitoring and optimal treatment of congestive heart failure (HF). Furthermore, in terms of right heart function parameters, CA125 levels are more advantageous than other biomarkers of HF. CA125 is expected to become a new biological alternative marker for congestive HF and thereby is expected be widely used in clinical practice

    Host Lipids in Positive-Strand RNA Virus Genome Replication

    Get PDF
    Membrane association is a hallmark of the genome replication of positive-strand RNA viruses [(+)RNA viruses]. All well-studied (+)RNA viruses remodel host membranes and lipid metabolism through orchestrated virus-host interactions to create a suitable microenvironment to survive and thrive in host cells. Recent research has shown that host lipids, as major components of cellular membranes, play key roles in the replication of multiple (+)RNA viruses. This review focuses on how (+)RNA viruses manipulate host lipid synthesis and metabolism to facilitate their genomic RNA replication, and how interference with the cellular lipid metabolism affects viral replication

    Salvianolic Acid A Attenuates Endoplasmic Reticulum Stress and Protects Against Cholestasis-Induced Liver Fibrosis via the SIRT1/HSF1 Pathway

    Get PDF
    Background: Endoplasmic reticulum stress (ER stress) plays a critical role in the pathogenesis of liver fibrosis; thus, it can be a potential therapeutic target of fibrosis. However, the mechanism of ER stress regulation in fibrosis, particularly through sirtuin 1 (SIRT1), remains unclear. The objective of this study was to investigate the effect of SIRT1-mediated inhibition of ER stress in bile duct ligation (BDL)-induced liver fibrosis, and to explore the effect of salvianolic acid A (SalA) on BDL-induced liver fibrosis through SIRT1/heat shock factor 1 (HSF1) signaling.Materials and Methods: We explored the effects of SalA on liver fibrosis and ER stress in BDL-induced liver fibrosis in rats and the human hepatic stellate cell line LX2 cells. The LX2 cells were treated with 20 ng of platelet-derived growth factor-BB homodimer (PDGF-BB) for 24 h, and then incubated in the absence or presence of SalA (25 μM) for 24 h.Results:In vivo, SalA treatment alleviated BDL-induced liver injury and ER stress. Importantly, SalA treatment increased HSF1 expression and activity using a SIRT1-dependent mechanism. In LX2 cells, PDGF-BB induced ER stress and fibrosis were blocked by HSF1 overexpression. Furthermore, SIRT1 siRNA abrogated the SalA-mediated promotion of HSF1 deacetylation and expression, suggesting that SalA-mediated protection occurs by SIRT1 targeting HSF1 for deacetylation.Conclusion: This is the first study to identify the SIRT1/HSF1 pathway as a key therapeutic target for controlling BDL-induced liver fibrosis and to show that SalA confers protection against BDL- and PDGF-BB-induced hepatic fibrosis and ER stress through SIRT1-mediated HSF1 deacetylation

    Theoretical analysis of support stability in large dip angle coal seam mined with fully-mechanized top coal caving

    No full text
    Support stability is critical to ensure fully-mechanized top coal caving of large dip angle coal seam. To obtain the relations between each factor and hydraulic support stability, the mechanic model of large dip angle coal seam along face dip and strike was built to analyze support stability, including antitoppling, anti-slip, and anti-rotation of supports. The result indicates: Along the face dip, the suport stability was negatively correlated with dip angle; Higher top caving means lower anti-rotation at suport tail; With initial support force and working resistance of supports enhanced, the anti-slip, and antirotation stability of supports can be risen significantly. Along the strike, the critical toppling angle was proportional to dip angle, mining height, support weight, support width and support force; The critica slip angle was positive correlation with support force, friction coefficient of roof and supports. According to the results of both mechanical analysis and engineering projects, support stability in large dip angle can be risen efficiently and supports slipping, toppling and rotation can be avoided by selecting proper technical methods and equipment, like enhancing initial support force appropriately

    FERONIA Receptor Kinase Integrates with Hormone Signaling to Regulate Plant Growth, Development, and Responses to Environmental Stimuli

    No full text
    Plant hormones are critical chemicals that participate in almost all aspects of plant life by triggering cellular response cascades. FERONIA is one of the most well studied members in the subfamily of Catharanthus roseus receptor-like kinase1-like (CrRLK1Ls) hormones. It has been proved to be involved in many different processes with the discovery of its ligands, interacting partners, and downstream signaling components. A growing body of evidence shows that FERONIA serves as a hub to integrate inter- and intracellular signals in response to internal and external cues. Here, we summarize the recent advances of FERONIA in regulating plant growth, development, and immunity through interactions with multiple plant hormone signaling pathways

    A Higher-Order Loss-Separation Model for Fast Estimation of Core Loss in High-Frequency Transformers

    No full text
    The core loss calculation is essential for the design and performance evaluation of high-frequency transformers. It is related to the dimensions, temperature rises performance, and operating efficiency of transformer designs. Some scholars have examined the correlation between the characteristics of the core and losses, such as the core air gap length and the core structure; some investigations have also analyzed the effects of harmonics, distortion flux, and other factors on core losses. However, in reality, the core operating environment of high-frequency transformers is very complex, and achieving the required accuracy of loss model calculations is difficult. This paper discussed the insufficiency of the classical Bertotti loss separation model in estimating core loss under non-sinusoidal excitation of high-frequency transformers. Based on the derivation and modification of the classical loss model, the magnetic performance test platform of the nanocrystalline core material was established. In order to obtain a higher-order correction calculation method for the core loss of high-frequency transformers under trapezoidal wave excitation, the experimentally measured loss curves of nanocrystalline materials were further corrected. Finally, the accuracy of the correction model was verified by changing the loss results by varying the trapezoidal wave rise time constant
    corecore