29 research outputs found

    Utjecaj temperature uzgoja na ekspresiju gena za biosintezu pigmenta monakolina K u plijesni Monascus sp.

    Get PDF
    In this study, the effects of temperature-shift (from 30 to 25 °C) and temperature-constant (at 30 °C) cultivation on the mass of Monascus fuliginosus CG-6 mycelia and concentration of the produced monacolin K (MK) were monitored. The expression levels of the MK biosynthetic genes of M. fuliginosus CG-6 at constant and variable culture temperatures were analysed by real-time quantitative polymerase chain reaction (RT-qPCR). The total protein was collected and determined by liquid chromatography-electrospray ionisation with tandem mass spectrometry (LC-ESI-MS/MS). Results showed that the maximum mycelial mass in temperature-shift cultivation was only 0.477 g of dry cell mass per dish, which was lower than that in temperature-constant cultivation (0.581 g of dry cell mass per dish); however, the maximum concentration of MK in temperature-shift cultivation (34.5 μg/mL) was 16 times higher than that in temperature-constant cultivation at 30 °C (2.11 μg/mL). Gene expression analysis showed that the expression of the MK biosynthetic gene cluster at culture temperature of 25 °C was higher than that at 30 °C, which was similar to the trend of the MK concentration, except for individual MK B and MK C genes. Analysis of differential protein expression revealed that 2016 proteins were detected by LC-ESI-MS/MS. The expression level of efflux pump protein coded by the MK I gene exhibited the same upregulated trend as the expression of MK I in temperature-shift cultivation. Temperature-shift cultivation enhanced the expression of proteins in the secondary metabolite production pathway, but suppressed the expression of proteins involved in the mycelial growth.U radu je istražen utjecaj promjene temperature (s 30 na 25 °C) i konstantne temperature uzgoja (30 °C) na masu micelija plijesni Monascus fuliginosus CG-6 i koncentraciju proizvedenog monakolina K, pri čemu je razina ekspresije gena za biosintezu monakolina praćena metodom RT-qPCR. Ukupni su proteini određeni metodom LC -ESI-MS/MS. Rezultati pokazuju da je maksimalna masa micelija dobivenog pri promjeni temperature uzgoja bila samo 0,477 g suhe tvari po Petrijevoj zdjelici, što je znatno manje od one dobivene uzgojem pri konstantnoj temperaturi (0,581 g suhe tvari po Petrijevoj zdjelici). Međutim, maksimalna koncentracija monakolina K pri promjeni temperature uzgoja bila je 34,5 μg/mL, tj. 16 puta veća od one dobivene uzgojem pri konstantnoj temperaturi (2,11 μg/mL). U skladu s tim, utvrđeno je da je razina ekspresije klastera gena za biosintezu monakolina K veća pri 25 nego pri 30 °C, osim za gene MK B i MK C. Analizom diferencijalne ekspresije proteina otkriveno je 2016 različitih proteina, identificiranih metodom LC-ESI-MS/MS. Ekspresija proteinske pumpe koju kodira MK I gen pokazala je isti trend kao i ekspresija samog gena pri promjeni temperature uzgoja s 30 na 25 °C. Promjena temperature uzgoja povećala je ekspresiju proteina uključenih u sintezu sekundarnih metabolita, no smanjila ekspresiju proteina odgovornih za rast micelija

    A preliminary evaluation of targeted nanopore sequencing technology for the detection of Mycobacterium tuberculosis in bronchoalveolar lavage fluid specimens

    Get PDF
    ObjectiveTo evaluate the efficacy of targeted nanopore sequencing technology for the detection of Mycobacterium tuberculosis(M.tb.) in bronchoalveolar lavage fluid(BALF) specimens.MethodsA prospective study was used to select 58 patients with suspected pulmonary tuberculosis(PTB) at Henan Chest Hospital from January to October 2022 for bronchoscopy, and BALF specimens were subjected to acid-fast bacilli(AFB) smear, Mycobacterium tuberculosis MGIT960 liquid culture, Gene Xpert MTB/RIF (Xpert MTB/RIF) and targeted nanopore sequencing (TNS) for the detection of M.tb., comparing the differences in the positive rates of the four methods for the detection of patients with different classifications.ResultsAmong 58 patients with suspected pulmonary tuberculosis, there were 48 patients with a final diagnosis of pulmonary tuberculosis. Using the clinical composite diagnosis as the reference gold standard, the sensitivity of AFB smear were 27.1% (95% CI: 15.3-41.8); for M.tb culture were 39.6% (95% CI: 25.8-54.7); for Xpert MTB/RIF were 56.2% (95% CI: 41.2-70.5); for TNS were 89.6% (95% CI: 77.3-96.5). Using BALF specimens Xpert MTB/RIF and/or M.tb. culture as the reference standard, TNS showed 100% (30/30) sensitivity. The sensitivity of NGS for pulmonary tuberculosis diagnosis was significantly higher than Xpert MTB/RIF, M.tb. culture, and AFB smear. Besides, P values of <0.05 were considered statistically significant.ConclusionUsing a clinical composite reference standard as a reference gold standard, TNS has the highest sensitivity and consistency with clinical diagnosis, and can rapidly and efficiently detect PTB in BALF specimens, which can aid to improve the early diagnosis of suspected tuberculosis patients

    Effect of Temperature-Shift and Temperature-Constant Cultivation on the Monacolin K Biosynthetic Gene Cluster Expression in Monascus sp.

    No full text
    In this study, the effects of temperature-shift (from 30 to 25 °C) and temperature-constant (at 30 °C) cultivation on the mass of Monascus fuliginosus CG-6 mycelia and concentration of the produced monacolin K (MK) were monitored. The expression levels of the MK biosynthetic genes of M. fuliginosus CG-6 at constant and variable culture temperatures were analysed by real-time quantitative polymerase chain reaction (RT-qPCR). The total protein was collected and determined by liquid chromatography-electrospray ionisation with tandem mass spectrometry (LC-ESI-MS/MS). Results showed that the maximum mycelial mass in temperature-shift cultivation was only 0.477 g of dry cell mass per dish, which was lower than that in temperature-constant cultivation (0.581 g of dry cell mass per dish); however, the maximum concentration of MK in temperature-shift cultivation (34.5 μg/mL) was 16 times higher than that in temperature-constant cultivation at 30 °C (2.11 μg/mL). Gene expression analysis showed that the expression of the MK biosynthetic gene cluster at culture temperature of 25 °C was higher than that at 30 °C, which was similar to the trend of the MK concentration, except for individual MK B and MK C genes. Analysis of differential protein expression revealed that 2016 proteins were detected by LC-ESI-MS/MS. The expression level of efflux pump protein coded by the MK I gene exhibited the same upregulated trend as the expression of MK I in temperature-shift cultivation. Temperature-shift cultivation enhanced the expression of proteins in the secondary metabolite production pathway, but suppressed the expression of proteins involved in the mycelial growth

    A stemness-based eleven-gene signature correlates with the clinical outcome of hepatocellular carcinoma

    No full text
    Abstract Background Cumulative evidences have been implicated cancer stem cells in the tumor environment of hepatocellular carcinoma (HCC) cells, whereas the biological functions and prognostic significance of stemness related genes (SRGs) in HCC is still unclear. Methods Molecular subtypes were identified by cumulative distribution function (CDF) clustering on 207 prognostic SRGs. The overall survival (OS) predictive gene signature was developed, internally and externally validated based on HCC datasets including The Cancer Genome Atlas (TCGA), GEO and ICGC datasets. Hub genes were identified in molecular subtypes by protein-protein interaction (PPI) network analysis, and then enrolled for determination of prognostic genes. Univariate, LASSO and multivariate Cox regression analyses were performed to assess prognostic genes and construct the prognostic gene signature. Time-dependent receiver operating characteristic (ROC) curve, Kaplan-Meier curve and nomogram were used to assess the performance of the gene signature. Results We identified four molecular subtypes, among which the C2 subtype showed the highest SRGs expression levels and proportions of immune cells, whereas the worst OS; the C1 subtype showed the lowest SRGs expression levels and was associated with most favorable OS. Next, we identified 11 prognostic genes (CDX2, PON1, ADH4, RBP2, LCAT, GAL, LPA, CYP19A1, GAST, SST and UGT1A8) and then constructed a prognostic 11-gene module and validated its robustness in all three datasets. Moreover, by univariate and multivariate Cox regression, we confirmed the independent prognostic ability of the 11-gene module for patients with HCC. In addition, calibration analysis plots indicated the excellent predictive performance of the prognostic nomogram constructed based on the 11-gene signature. Conclusions Findings in the present study shed new light on the role of stemness related genes within HCC, and the established 11-SRG signature can be utilized as a novel prognostic marker for survival prognostication in patients with HCC

    Defrosting Performance Improvement of Air-Source Heat Pump Combined Refrigerant Direct-Condensation Radiant Floor Heating System with Phase Change Material

    No full text
    Traditional defrosting methods applied to solve frosting problems of air-source heat pumps operating in cold periods may reduce heat capacity of the system and decrease indoor thermal comfort. In order to improve the performance of air-source heat pump (ASHP) and maintain indoor temperature in defrosting conditions, an air-source heat pump combined with a refrigerant direct-condensation radiant floor heating system with phase change material is proposed and evaluated in this study. Two radiant floor heating terminals with and without composite phase change material modules were compared through experiments. A composite phase change material based on dodecanoic acid-tetradecanol-hexadecanol mixture and expanded graphite was investigated for this application. Experimental results indicate that both heat fluxes of two comparing terminals are higher than 70 W/m2 in heating condition. At the same time, the floor surface temperature, indoor air temperature, and heating capacity of the terminal with composite phase change material modules are higher than those without composite phase change material modules in defrosting condition. This suggests that the proposed system with composite phase change material modules can improve indoor thermal comfort in defrosting condition as well as satisfy the heating requirement in heating condition

    Experimental and numerical study on the heat transfer performance of the radiant floor heating condenser with composite phase change material

    No full text
    Traditional hot-water ASHP systems have disadvantage of low energy efficiency due to the requirement of secondary heat exchange. To maintain the stability of indoor air temperature during defrosting, the existing ASHP systems adopt heat exchanger to store heat, which increases the system complexity. To overcome these obstacles, a novel ASHP system integrated with radiant floor heating condenser (RFHC) is proposed, which uses refrigerant as working fluid to exchange heat with indoor environment directly. In addition, the composite phase change material (CPCM) is added in the RFHC for heat storage. Experiments are conducted and results show that compared with traditional ASHP systems, the proposed system has higher energy efficiency and can reduce indoor air temperature fluctuation under defrosting condition. A detailed numerical model of the RFHC is established and validated with the experimental data, and then the impacts of the operating and structural parameters on the heat transfer performance of the RFHC system are investigated. Results show that under the indoor air temperature of test room keeps at 18.0 oC, the optimal operating condition of this system is the condensing temperature with 38.0 oC and the refrigerant mass flow rate with 3.8 kg· h-1. The optimal structural scheme of the RFHC is the copper pipe spacing with 0.25 m and the length of copper pipe with 12.0 m

    A Shallow Seafloor Reverberation Simulation Method Based on Generative Adversarial Networks

    No full text
    Reverberation characteristics must be considered in the design of sonar. The research on reverberation characteristics is based on a large number of actual reverberation data. Due to the cost of trials, it is not easy to obtain actual lake and sea trial reverberation data, which leads to a lack of actual reverberation data. Traditionally, reverberation data are obtained by modeling the generation mechanism of seafloor reverberation. The usability of the models requires a large amount of actual seafloor reverberation data to verify. In terms of the reverberation modeling theory, scattering models are mostly empirical, computationally intensive and inefficient. In order to solve the above obstacles, we propose a shallow seafloor reverberation data simulation method based on the generative adversarial network (GAN), which uses a small amount of actual reverberation data as reference samples to train the GAN to generate more reverberation data. The reverberation data generated by the GAN are compared with that simulated by traditional methods, and it is found that the reverberation data generated by the GAN meet the reverberation characteristics. Once the network is trained, the reverberation data are generated with very little computation. In addition, the method is universal and can be applied to any sea area. Compared with the traditional method, this method has a simple modeling idea, less computation and strong universality. It can be used as an alternative method for sea trials to provide data support for the study of seafloor reverberation characteristics, and it has broad application prospects in antireverberation technology research and active sonar design
    corecore