4 research outputs found

    Hepatic dysfunction is associated with vitamin D deficiency and poor glycemic control in diabetes mellitus

    Get PDF
    Background/Aims: The effect of the rising prevalence of nonalcoholic fatty liver disease on the 25-hydroxylation of pre-vitamin D in the liver, and consequent glycemic control in children with diabetes mellitus is not known. Our aim was to determine whether mild hepatic dysfunction was associated with impaired 25-hydroxylation of pre-vitamin D, and if this vitamin D deficiency was associated with impaired glycemic control in children and adolescents with type 1 diabetes (TIDM) and type 2 diabetes (T2DM). Methods: We analyzed simultaneously measured HbA1c, ALT, AST, and 25OHD levels and clinical parameters in 121 children and adolescents with T1DM (n=81) and T2DM (n=40). The subjects, ages 11–21 years, all had diabetes of \u3e6 months duration. Multivariate linear regression was used to analyze the associations, while comparisons between subgroups were made using two-tailed Student’s t-test. Results: Vitamin D deficiency (25OHD/mL (37.5 nmol/L) was more prevalent in T2DM patients (47.5%) compared to T1DM patients (18.5%). Subjects with T2DM had significantly elevated transaminases (AST 39.3±2.0 vs. 22.4±1.4, p Conclusions: The association of elevated ALT with vitamin D deficiency suggests that hepatic dysfunction could impair vitamin D metabolism and negatively impact glycemic control in youth with T2DM

    Osteoblast-Osteoclast Communication and Bone Homeostasis

    Get PDF
    Bone remodeling is tightly regulated by a cross-talk between bone-forming osteoblasts and bone-resorbing osteoclasts. Osteoblasts and osteoclasts communicate with each other to regulate cellular behavior, survival and differentiation through direct cell-to-cell contact or through secretory proteins. A direct interaction between osteoblasts and osteoclasts allows bidirectional transduction of activation signals through EFNB2-EPHB4, FASL-FAS or SEMA3A-NRP1, regulating differentiation and survival of osteoblasts or osteoclasts. Alternatively, osteoblasts produce a range of different secretory molecules, including M-CSF, RANKL/OPG, WNT5A, and WNT16, that promote or suppress osteoclast differentiation and development. Osteoclasts also influence osteoblast formation and differentiation through secretion of soluble factors, including S1P, SEMA4D, CTHRC1 and C3. Here we review the current knowledge regarding membrane bound- and soluble factors governing cross-talk between osteoblasts and osteoclasts

    Differential Effects of Inflammation on Bone and Response to Biologics in Rheumatoid Arthritis and Spondyloarthritis

    No full text
    PURPOSE OF REVIEW: We review the pathways, cytokines, and concepts important to the pathogenesis of bone resorption and formation in rheumatoid arthritis (RA) and spondyloarthritis (SpA). RECENT FINDINGS: Research in bone biology has shed light on the pathogenesis of the joint destruction that occurs in RA and in peripheral SpA. However, understanding the mechanisms behind the bone formation seen in peripheral and axial SpA has been challenging. Mouse models have been used to gain an understanding of key signaling pathways, cytokines and cells regulating inflammation in these diseases. Biologic therapies directed against these targets have been developed to control both inflammation and effects on bone. Although biologic therapies improve joint inflammation in both RA and SpA, leading to a decrease in pain and improving quality of life for patients, the long-term effects of such therapies must also be evaluated by assessing their impact on structural progression. Inhibition of radiographic progression in both RA and peripheral SpA has been easier to demonstrate than in axial SpA. Here, we discuss the similarities and differences among biologic therapies as they pertain to radiographic progression

    Differential Effects of Inflammation on Bone and Response to Biologics in Rheumatoid Arthritis and Spondyloarthritis

    No full text
    corecore