18 research outputs found

    Targeting SPHK1/PBX1 Axis Induced Cell Cycle Arrest in Non-Small Cell Lung Cancer

    No full text
    Non-small cell lung cancer (NSCLC) accounts for 85~90% of lung cancer cases, with a poor prognosis and a low 5-year survival rate. Sphingosine kinase-1 (SPHK1), a key enzyme in regulating sphingolipid metabolism, has been reported to be involved in the development of NSCLC, although the underlying mechanism remains unclear. In the present study, we demonstrated the abnormal signature of SPHK1 in NSCLC lesions and cell lines of lung cancers with a potential tumorigenic role in cell cycle regulation. Functionally, ectopic Pre-B cell leukemia homeobox-1 (PBX1) was capable of restoring the arrested G1 phase induced by SPHK1 knockdown. However, exogenous sphingosine-1-phosphate (S1P) supply had little impact on the cell cycle arrest by PBX1 silence. Furthermore, S1P receptor S1PR3 was revealed as a specific switch to transport the extracellular S1P signal into cells, and subsequently activated PBX1 to regulate cell cycle progression. In addition, Akt signaling partially participated in the SPHK1/S1PR3/PBX1 axis to regulate the cell cycle, and the Akt inhibitor significantly decreased PBX1 expression and induced G1 arrest. Targeting SPHK1 with PF-543 significantly inhibited the cell cycle and tumor growth in preclinical xenograft tumor models of NSCLC. Taken together, our findings exhibit the vital role of the SPHK1/S1PR3/PBX1 axis in regulating the cell cycle of NSCLC, and targeting SPHK1 may develop a therapeutic effect in tumor treatment

    Quantitative Analysis and Differential Evaluation of Radix Bupleuri Cultivated in Different Regions Based on HPLC-MS and GC-MS Combined with Multivariate Statistical Analysis

    No full text
    The quality of Radix Bupleuri is greatly affected by its growing environment. In this study, Radix Bupleuri samples that were harvested from seven different regions across northwest China were examined by high-performance liquid chromatography (HPLC) and gas chromatography (GC) coupled with mass spectrometry (MS) to reveal significant differences in quality contributed by the cultivation region. An HPLC-MS method was firstly established and used in the multiple reaction monitoring mode for the quantitative analysis of five saikosaponins in Radix Bupleuri so as to evaluate the difference in the absolute content of saikosaponins attributable to the cultivation region. The effect on the components of Radix Bupleuri was further investigated based on the profiles of the representative saponins and volatile compounds, which were extracted from the Radix Bupleuri samples and analyzed by HPLC-MS and GC-MS. Multivariate statistical analysis was employed to differentiate the Radix Bupleuri samples cultivated in different regions and to discover the differential compositions. The developed quantitative method was validated to be accurate, stable, sensitive, and repeatable for the determination of five saikosaponins. Further statistical tests revealed that the collected Radix Bupleuri samples were distinctly different from each other in terms of both saponins and volatile compounds, based on the provinces where they were grown. In addition, twenty-eight saponins and fifty-eight volatile compounds were identified as the differentially accumulated compositions that contributed to the discrimination of the Radix Bupleuri samples. The Radix Bupleuri samples grown in Shouyang county showed the highest content of saikosaponins. All of the results indicated that the cultivation region significantly affected the accumulation and diversity of the main chemical components of Radix Bupleuri. The findings of this research provide insights into the effect of the cultivation region on the quality of Radix Bupleuri and the differentiation of Radix Bupleuri cultivated in different regions based on the use of HPLC-MS and GC-MS combined with multivariate statistical analysis

    Niclosamide Ethanolamine Salt Alleviates Idiopathic Pulmonary Fibrosis by Modulating the PI3K-mTORC1 Pathway

    No full text
    Idiopathic pulmonary fibrosis (IPF) is an interstitial pneumonia characterized by chronic progressive fibrosis, ultimately leading to respiratory failure and early mortality. Although not fully explored, the major causative factors in IPF pathogenesis are dysregulated fibroblast proliferation and excessive accumulation of extracellular matrix (ECM) deposited by myofibroblasts differentiated from pulmonary fibroblasts. More signalling pathways, including the PI3K-Akt-mTOR and autophagy pathways, are involved in IPF pathogenesis. Niclosamide ethanolamine salt (NEN) is a highly effective multitarget small-molecule inhibitor reported in antitumor studies. Here, we reported that in an IPF animal model treated with NEN for 14 days, attractive relief of pulmonary function and hydroxyproline content were observed. To further explore, the therapeutic effect of NEN in IPF and pathological changes in bleomycin-challenged mouse lung sections were assessed. Additionally, the effects of NEN on abnormal proliferation and ECM production in IPF cell models established with TGF-β1-stimulated A549 cells or DHLF-IPF cells were studied. In nonclinical studies, NEN ameliorated lung function and histopathological changes in bleomycin-challenged mice, and the lung hydroxyproline content was significantly diminished with NEN treatment. In vitro, NEN inhibited PI3K-mTORC1 signalling and arrested the cell cycle to prevent uncontrolled fibroblast proliferation. Additionally, NEN inhibited TGF-β1-induced epithelial–mesenchymal transition (EMT) and ECM accumulation via the mTORC1-4EBP1 axis. Furthermore, NEN-activated noncanonical autophagy resensitized fibroblasts to apoptosis. The above findings demonstrated the potential antifibrotic effect of NEN mediated via modulation of the PI3K-mTORC1 and autophagy pathways. These data provide strong evidence for a therapeutic role for NEN in IPF

    A design of versatile image processing platform based on the dual multi-core DSP and FPGA

    No full text
    <p> As an application <span class="hit">of</span> TI&#39;s latest multi-core <span class="hit">DSP</span> chip TMS320C6678 and Xilinx&#39;s <span class="hit">FPGA</span> chip XC5VLX110T, This paper <span class="hit">designed</span> and implemented a <span class="hit">dual</span>-<span class="hit">DSP</span> and <span class="hit">FPGA</span> real-time <span class="hit">image</span> <span class="hit">processing</span> system <span class="hit">based</span> <span class="hit">on</span> <span class="hit">the</span> Serial Rapid IO (SRIO), Hyperlink and reconfigurable technology. It used TMS320C6678 <span class="hit">on</span>-chip SRIO and Hyperlink interface module, XC5VLX110T <span class="hit">on</span>-chip Rocket IO modules, reconfigurable technology to implement a <span class="hit">DSP</span> and <span class="hit">FPGA</span> loosely coupled parallel interconnection reconfigurable system. <span class="hit">On</span> Embedded operating system&#39;s <span class="hit">DSP</span> / BIOS architecture, this paper implemented <span class="hit">the</span> program <span class="hit">of</span> hardware driver <span class="hit">of</span> bottom layer and <span class="hit">the</span> corresponding data transfer procedures, and also completed <span class="hit">the</span> transmission <span class="hit">of</span> digital <span class="hit">images</span>.</p

    The Differences in Spatial Luminescence Characteristics between Blue and Green Quantum Wells in Monolithic Semipolar (20-21) LEDs Using SNOM

    No full text
    The differences in spatially optical properties between blue and green quantum wells (QWs) in a monolithic dual-wavelength semipolar (20-21) structure were investigated by scanning near-field optical microscopy (SNOM). The shortest wavelength for green QWs and the longest wavelength for blue QWs were both discovered in the region with the largest stress. It demonstrated that In composition, compared to stress, plays a negligible role in defining the peak wavelength for blue QWs, while for green QWs, In composition strongly affects the peak wavelength. For green QWs, significant photoluminescence enhancement was observed in the defect-free region, which was not found for blue QWs. Furthermore, the efficiency droop was aggravated in the defect-free region for green QWs but reduced for blue QWs. It indicates that carrier delocalization plays a more important role in the efficiency droop for QWs of good crystalline quality, which is experimentally pointed out for the first time

    Time and Crack Width Dependent Model of Chloride Transportation in Engineered Cementitious Composites (ECC)

    No full text
    This paper aims to develop a chloride transport model of engineered cementitious composites (ECC) that can consider the influence of both exposure time and crack width. ECC specimens with crack widths of 0.1 mm, 0.2 mm and 0.3 mm were soaked into NaCl solution with periods of 30, 60, 90 and 120 days. The free chloride content profile was measured and used for the development of the transport model. Regression analysis was applied to build the time and crack width dependent models of apparent diffusion coefficient and surface chloride content. The results show that the crack width has significant influence on the free chloride concentration profile when it is above 0.2 mm and the time-dependent constant n decreases linearly with the crack width. The chloride transport model was obtained by subscribing the models of apparent diffusion coefficient and surface chloride content into the analytical solution of Fick&rsquo;s second law. The model was further validated with the experimental results, showing a deviation within 20%. The findings of the presented study can enhance the current understanding on the chloride transportation in ECC

    Regulation of specific abnormal calcium signals in the hippocampal CA1 and primary cortex M1 alleviates the progression of temporal lobe epilepsy

    No full text
    Temporal lobe epilepsy is a multifactorial neurological dysfunction syndrome that is refractory, resistant to antiepileptic drugs, and has a high recurrence rate. The pathogenesis of temporal lobe epilepsy is complex and is not fully understood. Intracellular calcium dynamics have been implicated in temporal lobe epilepsy. However, the effect of fluctuating calcium activity in CA1 pyramidal neurons on temporal lobe epilepsy is unknown, and no longitudinal studies have investigated calcium activity in pyramidal neurons in the hippocampal CA1 and primary motor cortex M1 of freely moving mice. In this study, we used a multi-channel fiber photometry system to continuously record calcium signals in CA1 and M1 during the temporal lobe epilepsy process. We found that calcium signals varied according to the grade of temporal lobe epilepsy episodes. In particular, cortical spreading depression, which has recently been frequently used to represent the continuously and substantially increased calcium signals, was found to correspond to complex and severe behavioral characteristics of temporal lobe epilepsy ranging from grade II to grade V. However, vigorous calcium oscillations and highly synchronized calcium signals in CA1 and M1 were strongly related to convulsive motor seizures. Chemogenetic inhibition of pyramidal neurons in CA1 significantly attenuated the amplitudes of the calcium signals corresponding to grade I episodes. In addition, the latency of cortical spreading depression was prolonged, and the above-mentioned abnormal calcium signals in CA1 and M1 were also significantly reduced. Intriguingly, it was possible to rescue the altered intracellular calcium dynamics. Via simultaneous analysis of calcium signals and epileptic behaviors, we found that the progression of temporal lobe epilepsy was alleviated when specific calcium signals were reduced, and that the end-point behaviors of temporal lobe epilepsy were improved. Our results indicate that the calcium dynamic between CA1 and M1 may reflect specific epileptic behaviors corresponding to different grades. Furthermore, the selective regulation of abnormal calcium signals in CA1 pyramidal neurons appears to effectively alleviate temporal lobe epilepsy, thereby providing a potential molecular mechanism for a new temporal lobe epilepsy diagnosis and treatment strategy

    S1PR1 serves as a viable drug target against pulmonary fibrosis by increasing the integrity of the endothelial barrier of the lung

    No full text
    Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease with unclear etiology and limited treatment options. The median survival time for IPF patients is approximately 2–3 years and there is no effective intervention to treat IPF other than lung transplantation. As important components of lung tissue, endothelial cells (ECs) are associated with pulmonary diseases. However, the role of endothelial dysfunction in pulmonary fibrosis (PF) is incompletely understood. Sphingosine-1-phosphate receptor 1 (S1PR1) is a G protein-coupled receptor highly expressed in lung ECs. Its expression is markedly reduced in patients with IPF. Herein, we generated an endothelial-conditional S1pr1 knockout mouse model which exhibited inflammation and fibrosis with or without bleomycin (BLM) challenge. Selective activation of S1PR1 with an S1PR1 agonist, IMMH002, exerted a potent therapeutic effect in mice with bleomycin-induced fibrosis by protecting the integrity of the endothelial barrier. These results suggest that S1PR1 might be a promising drug target for IPF therapy

    Mitochondrial DNA and Functional Investigations into the Radiosensitivity of Four Mouse Strains

    Get PDF
    We investigated whether genetic radiosensitivity-related changes in mtDNA/nDNA ratios are significant to mitochondrial function and if a material effect on mtDNA content and function exists. BALB/c (radiosensitive), C57BL/6 (radioresistant), and F1 hybrid mouse strains were exposed to total body irradiation. Hepatic genomic DNA was extracted, and mitochondria were isolated. Mitochondrial oxygen consumption, ROS, and calcium-induced mitochondrial swelling were measured. Radiation influenced strain-specific survival in vivo. F1 hybrid survival was influenced by maternal input. Changes in mitochondrial content corresponded to survival in vivo among the 4 strains. Calcium-induced mitochondrial swelling was strain dependent. Isolated mitochondria from BALB/c mice were significantly more sensitive to calcium overload than mitochondria from C57BL/6 mice. Maternal input partially influenced the recovery effect of radiation on calcium-induced mitochondrial swelling in F1 hybrids; the hybrid with a radiosensitive maternal lineage exhibited a lower rate of recovery. Hybrids had a survival rate that was biased toward maternal input. mtDNA content and mitochondrial permeability transition pores (MPTP) measured in these strains before irradiation reflected a dominant input from the parent. After irradiation, the MPTP opened sooner in radiosensitive and hybrid strains, likely triggering intrinsic apoptotic pathways. These findings have important implications for translation into predictors of radiation sensitivity/resistance
    corecore