21 research outputs found

    Diet-Intestinal Microbiota Axis in Osteoarthritis: A Possible Role

    No full text
    Intestinal microbiota is highly involved in host physiology and pathology through activity of the microbiome and its metabolic products. Osteoarthritis (OA) is a common form of arthritis characterized by articular cartilage destruction and osteophyte formation. Although various person-level risk factors, such as age, sex, and obesity, have been proposed for the pathogenesis of OA, the underlying links between these person-level factors and OA are still enigmatic. Based on the current understanding in the crosstalk between intestinal microbiota and these risk factors, intestinal microbiota could be considered as a major hidden risk factor that provides a unifying mechanism to explain the involvement of these person-level risk factors in OA

    Research Trends of Patient-Reported Outcome Measures in Orthopedic Medical Practices: A Bibliometric and Visualized Study

    No full text
    Background and Objectives: Patient-reported outcome measures (PROMs), also known as self-report measures, are critical tools for evaluating health outcomes by gathering information directly from patients without external interpretation. There has been a growing trend in the number of publications focusing on PROMs in orthopedic-related research. This study aims to identify the most valuable publications, influential journals, leading researchers, and core countries in this field using bibliometric analysis, providing researchers with an understanding of the current state and future trends of PROMs in orthopedic research. Materials and Methods: All PROMs in orthopedic-related publications from 1991 to 2022 were obtained from the WoSCC database. R software (version 4.2.2), VOSviewer (version 1.6.17), and Microsoft Excel (version 2303) were used for the bibliometric and visual analysis. Results: A total of 2273 publication records were found from 1991 to 2022. The results indicated that the United States (US) has made significant contributions to orthopedic-related PROMs. The majority of active research institutions are located in the US. J ORTHOP RES has published the most articles. J BONE JOINT SURG AM has the highest total citations. Conclusions: Our study provides a valuable reference for further exploration of the application of PROMs in orthopedics. PROMs have emerged as an increasingly popular area of research within the field of orthopedics, both in clinical practice and academic research. We conducted a bibliometric analysis in terms of journals, authors, countries, and institutions in this field. Additionally, we analyzed the potentialities and advantages of using PROMs in orthopedic research. There is an increasing trend towards using network-based or short message service (SMS)-based electronic patient-reported outcome measures (ePROMs) in orthopedic medical practices. It is anticipated that the role of PROMs in psychological and mental health research and telemedicine will continue to grow in importance

    Oligonucleotide Aptamer-Mediated Precision Therapy of Hematological Malignancies

    No full text
    Precision medicine has recently emerged as a promising strategy for cancer therapy because it not only specifically targets cancer cells but it also does not have adverse effects on normal cells. Oligonucleotide aptamers are a class of small molecule ligands that can specifically bind to their targets on cell surfaces with high affinity. Aptamers have great potential in precision cancer therapy due to their unique physical, chemical, and biological properties. Therefore, aptamer technology has been widely investigated for biomedical and clinical applications. This review focuses on the potential applications of aptamer technology as a new tool for precision treatment of hematological malignancies, including leukemia, lymphoma, and multiple myeloma. Keywords: aptamer, precision medicine, leukemia, lymphoma, multiple myelom

    Rupture of posterior cruciate ligament leads to radial displacement of the medial meniscus

    No full text
    Abstract Background To explore the association between the rupture of posterior cruciate ligament (PCL) and the radial displacement of medial meniscus under the conditions of different flexion and various axial loads. Methods The radial displacement value of medial meniscus was measured for the specimens of normal adult knee joints, including 12 intact PCLs, 6 ruptures of the anterolateral bundle (ALB), 6 ruptures of the postmedial bundle (PMB), and 12 complete ruptures. The measurement was conducted at 0°, 30°, 60°, and 90° of knee flexion angles under 200 N, 400 N, 600 N, 800 N and 1000 N of axial loads respectively. Results The displacement values of medial meniscus of the ALB rupture group increased at 0° flexion under 800 N and 1000 N, and at 30°, 60° and 90° flexion under all loads in comparison with the PCL intact group. The displacement values of the PMB rupture group was higher at 0° and 90° flexion under all loads, and at 30° and 60° flexion under 800 N and 1000 N loads. The displacement of the PCL complete rupture group increased at all flexion angles under all loads. Conclusions Either partial or complete rupture of the PCL can increase in the radial displacement of the medial meniscus, which may explain the degenerative changes that occuring in the medial meniscus due to PCL injury. Therefore, early reestablishment of the PCL is necessarily required in order to maintain stability of the knee joint after PCL injury

    HYBID in osteoarthritis: Potential target for disease progression

    No full text
    HYBID is a new hyaluronan-degrading enzyme and exists in various cells of the human body. Recently, HYBID was found to over-express in the osteoarthritic chondrocytes and fibroblast-like synoviocytes. According to these researches, high level of HYBID is significantly correlated with cartilage degeneration in joints and hyaluronic acid degradation in synovial fluid. In addition, HYBID can affect inflammatory cytokine secretion, cartilage and synovium fibrosis, synovial hyperplasia via multiple signaling pathways, thereby exacerbating osteoarthritis. Based on the existing research of HYBID in osteoarthritis, HYBID can break the metabolic balance of HA in joints through the degradation ability independent of HYALs/CD44 system and furthermore affect cartilage structure and mechanotransduction of chondrocytes. In particular, in addition to HYBID itself being able to trigger some signaling pathways, we believe that low-molecular-weight hyaluronan produced by excess degradation can also stimulate some disease-promoting signaling pathways by replacing high-molecular-weight hyaluronan in joints. The specific role of HYBID in osteoarthritis is gradually revealed, and the discovery of HYBID raises the new way to treat osteoarthritis. In this review, the expression and basic functions of HYBID in joints were summarized, and reveal potential role of HYBID as a key target in treatment for osteoarthritis

    The Expression of Osteopontin and Wnt5a in Articular Cartilage of Patients with Knee Osteoarthritis and Its Correlation with Disease Severity

    No full text
    Objectives. This study is undertaken to investigate the relation between osteopontin (OPN) and Wnt5a expression in the progression and pathogenesis of osteoarthritis (OA). Methods. 50 cartilage tissues from knee OA patients and normal controls were divided into four groups of severe, moderate, minor, and normal lesions based on the modified grading system of Mankin. Immunohistochemistry and real-time PCR were utilized to analyze the OPN and Wnt5a expression in articular cartilage. Besides, the relations between OPN and Wnt5a expression and the severity of OA were explored. Results. OPN and Wnt5a could be identified in four groups’ tissues. Amongst the groups, the intercomparisons of OPN expression levels showed statistical differences (P<0.01). Besides, the intercomparisons of Wnt5a expression degrees showed statistical differences (P<0.05), except that between the minor and normal groups (P>0.05). The scores of Mankin were demonstrated to relate to OPN expression (r=-0.847, P<0.01) and Wnt5a expression in every group (r=-0.843, P<0.01). Also, a positive correlation can be observed between the OPN and Wnt5a expression (r=0.769, P<0.01). Conclusion. In articular cartilage, the expressions of OPN and Wnt5a are positively related to progressive damage of knee OA joint. The correlation between Wnt5a and OPN might be important to the progression and pathogenesis of knee OA

    Osteopontin Promotes Expression of Matrix Metalloproteinase 13 through NF-κB Signaling in Osteoarthritis

    No full text
    Osteopontin (OPN) is associated with the severity and progression of osteoarthritis (OA); however, the mechanism of OPN in the pathogenesis of OA is unknown. In this study, we found that OA patients had higher abundance of OPN and matrix metalloproteinase 13 (MMP13). In chondrocytes, we showed that OPN promoted the production of MMP13 and activation of NF-κB pathway by increasing the abundance of p65 and phosphorylated p65 and translocation of p65 protein from cytoplasm to nucleus. Notably, inhibition of NF-κB pathway by inhibitor suppressed the production of MMP13 induced by OPN treatment. In conclusion, OPN induces production of MMP13 through activation of NF-κB pathway

    Systematic Understanding of the Mechanism of Baicalin against Ischemic Stroke through a Network Pharmacology Approach

    No full text
    Ischemic stroke is accompanied by high mortality and morbidity rates. At present, there is no effective clinical treatment. Alternatively, traditional Chinese medicine has been widely used in China and Japan for the treatment of ischemic stroke. Baicalin is a flavonoid extracted from Scutellaria baicalensis that has been shown to be effective against ischemic stroke; however, its mechanism has not been fully elucidated. Based on network pharmacology, we explored the potential mechanism of baicalin on a system level. After obtaining baicalin structural information from the PubChem database, an approach combined with literature mining and PharmMapper prediction was used to uncover baicalin targets. Ischemic stroke-related targets were gathered with the help of DrugBank, Online Mendelian Inheritance in Man (OMIM), Genetic Association Database (GAD), and Therapeutic Target Database (TTD). Protein-protein interaction (PPI) networks were constructed through the Cytoscape plugin BisoGenet and analyzed by topological methods. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment were carried out via the Database for Annotation, Visualization, and Integrated Discovery (DAVID) server. We obtained a total of 386 potential targets and 5 signaling pathways, including mitogen-activated protein kinase (MAPK), phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT), hypoxia-inducible factor-1 (HIF-1), nuclear factor kappa B (NF-κB), and forkhead box (FOXO) signaling pathways. GO analysis showed that these targets were associated with antiapoptosis, antioxidative stress, anti-inflammation, and other physiopathological processes that are involved in anti-ischemic stroke effects. In summary, the mechanism of baicalin against ischemic stroke involved multiple targets and signaling pathways. Our study provides a network pharmacology framework for future research on traditional Chinese medicine
    corecore