67 research outputs found
High Viral Load of Human Bocavirus Correlates with Duration of Wheezing in Children with Severe Lower Respiratory Tract Infection
Background: Human bocavirus (HBoV) is a newly discovered parvovirus and increasing evidences are available to support its role as an etiologic agent in lower respiratory tract infection (LRTI). The objective of this study is to assess the impact of HBoV viral load on clinical characteristics in children who were HBoV positive and suffered severe LRTI. Methods: Lower respiratory tract aspirates from 186 hospitalized children with severe LRTI were obtained by bronchoscopy. HBoVs were detected by real-time PCR and other 10 infectious agents were examined using PCR and/or direct fluorescent assay. Results: Thirty-one patients (24.6%) were tested positive for HBoV in the respiratory tract aspirates. Fifteen samples had a high viral load (.10 4 copies/mL) and the other sixteen samples had a low viral load (,10 4 copies/mL). The duration of presented wheezing and hospitalization was longer in children with high viral load of HBoV than that in children with low viral load. The days of wheezing showed a correlation with viral load of HBoV. Conclusion: We confirmed that HBoV was frequently detected in patients with severe LRTI. Wheezing was one of the most common symptoms presented by patients with positive HBoV. A high HBoV viral load could be an etiologic agent for LRTI
Infant 7-valent pneumococcal conjugate vaccine immunization alters young adulthood CD4+T cell subsets in allergic airway disease mouse model
Abstract7-Valent pneumococcal conjugate vaccine (PCV7) immunization in adulthood can inhibit allergic asthma in mouse model. The aim of this study is to investigate the effects of infant PCV7 immunization on young adulthood CD4+T cell subsets in a murine allergic airway disease (AAD) model. Our study indicated that infant PCV7 immunization can inhibit young adulthood airway inflammation and airway hyperresponsiveness (AHR) by inducing the production of Foxp3+Treg, Th1 cells and their cytokines IL-10 and IFN-Îł, inhibiting the production of Th2, Th17 cells and their cytokines IL-13 and IL-17A in BALB/c mice model. These results suggested that infant PCV7 immunization may serve as an effective measure to prevent young adulthood mice AAD
Transcriptomic analysis identified SLC40A1 as a key iron metabolism-related gene in airway macrophages in childhood allergic asthma
Introduction: Asthma is the most common chronic condition in children, with allergic asthma being the most common phenotype, accounting for approximately 80% of cases. Growing evidence suggests that disruption of iron homeostasis and iron regulatory molecules may be associated with childhood allergic asthma. However, the underlying molecular mechanism remains unclear.Methods: Three childhood asthma gene expression datasets were analyzed to detect aberrant expression profiles of iron metabolism-related genes in the airways of children with allergic asthma. Common iron metabolism-related differentially expressed genes (DEGs) across the three datasets were identified and were subjected to functional enrichment analysis. Possible correlations between key iron metabolism-related DEGs and type 2 airway inflammatory genes were investigated. Single-cell transcriptome analysis further identified major airway cell subpopulations driving key gene expression. Key iron metabolism-related gene SLC40A1 was validated in bronchoalveolar lavage (BAL) cells from childhood asthmatics with control individuals by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and immunofluorescence. The intracellular iron content in BAL cells was assessed by Perls iron staining and the iron levels in BAL supernatant was measured by iron assay to assess airway iron metabolism status in childhood asthmatics.Results: Five common iron metabolism-related DEGs were identified, which were functionally related to iron homeostasis. Among these genes, downregulated SLC40A1 was strongly correlated with type 2 airway inflammatory markers and the gene signature of SLC40A1 could potentially be used to determine type 2-high and type 2-low subsets in childhood allergic asthmatics. Further single-cell transcriptomic analysis identified airway macrophages driving SLC40A1 expression. Immunofluorescence staining revealed colocalization of FPN (encoded by SLC40A1) and macrophage marker CD68. Down-regulation of SLC40A1 (FPN) was validated by qRT-PCR and immunofluorescence analysis. Results further indicated reduced iron levels in the BAL fluid, but increased iron accumulation in BAL cells in childhood allergic asthma patients. Furthermore, decreased expression of SLC40A1 was closely correlated with reduced iron levels in the airways of children with allergic asthma.Discussion: Overall, these findings reveal the potential role of the iron metabolism-related gene SLC40A1 in the pathogenesis of childhood allergic asthma
Use of non-steroidal anti-inflammatory drugs and adverse outcomes during the COVID-19 pandemic: A systematic review and meta-analysis.
Background
There are concerns that the use of non-steroidal anti-inflammatory drugs (NSAIDs) may increase the risk of adverse outcomes among patients with coronavirus COVID-19. This study aimed to synthesize the evidence on associations between the use of NSAIDs and adverse outcomes.
Methods
A systematic search of WHO COVID-19 Database, Medline, the Cochrane Library, Web of Science, Embase, China Biology Medicine disc, China National Knowledge Infrastructure, and Wanfang Database for all articles published from January 1, 2020, to November 7, 2021, as well as a supplementary search of Google Scholar. We included all comparative studies that enrolled patients who took NSAIDs during the COVID-19 pandemic. Data extraction and quality assessment of methodology of included studies were completed by two reviewers independently. We conducted a meta-analysis on the main adverse outcomes, as well as selected subgroup analyses stratified by the type of NSAID and population (both positive for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or not).
Findings
Forty comparative studies evaluating 4,867,795 adult cases were identified. Twenty-eight (70%) of the included studies enrolled patients positive to SARS-CoV-2 tests. The use of NSAIDs did not reduce mortality outcomes among people with COVID-19 (number of studies [N]Â =Â 29, odds ratio [OR]Â =Â 0.93, 95% confidence interval [CI]: 0.75 to 1.14, I2 Â =Â 89%). Results suggested that the use of NSAIDs was not significantly associated with higher risk of SARS-CoV-2 infection in patients with or without COVID-19 (NÂ =Â 10, ORÂ =Â 0.96, 95% CI: 0.86 to 1.07, I2 Â =Â 78%; NÂ =Â 8, aORÂ =Â 1.01, 95% CI: 0.94 to 1.09, I2 Â =Â 26%), or an increased probability of intensive care unit (ICU) admission (NÂ =Â 12, ORÂ =Â 1.28, 95% CI: 0.94 to 1.75, I2 Â =Â 82% ; NÂ =Â 4, aORÂ =Â 0.89, 95% CI: 0.65 to 1.22, I2 Â =Â 60%), requiring mechanical ventilation (NÂ =Â 11, ORÂ =Â 1.11, 95% CI: 0.79 to 1.54, I2 Â =Â 63%; NÂ =Â 5, aORÂ =Â 0.80, 95% CI: 0.52 to 1.24, I2 Â =Â 66%), or administration of supplemental oxygen (NÂ =Â 5, ORÂ =Â 0.80, 95% CI: 0.52 to 1.24, I2 Â =Â 63%; NÂ =Â 2, aORÂ =Â 1.00, 95% CI: 0.89 to 1.12, I2 Â =Â 0%). The subgroup analysis revealed that, compared with patients not using any NSAIDs, the use of ibuprofen (NÂ =Â 5, ORÂ =Â 1.09, 95% CI: 0.50 to 2.39; NÂ =Â 4, aORÂ =Â 0.95, 95% CI: 0.78 to 1.16) and COX-2 inhibitor (NÂ =Â 4, ORÂ =Â 0.62, 95% CI: 0.35 to 1.11; NÂ =Â 2, aORÂ =Â 0.73, 95% CI: 0.45 to 1.18) were not associated with an increased risk of death.
Interpretation
Data suggests that NSAIDs such as ibuprofen, aspirin and COX-2 inhibitor, can be used safely among patients positive to SARS-CoV-2. However, for some of the analyses the number of studies were limited and the quality of evidence was overall low, therefore more research is needed to corroborate these findings.
Funding
There was no funding source for this study
Vancomycin efficiency and safety of a dosage of 40–60 mg/kg/d and corresponding trough concentrations in children with Gram-positive bacterial sepsis
BackgroundOptimal vancomycin trough concentrations and dosages remain controversial in sepsis children. We aim to investigate vancomycin treatment outcomes with a dosage of 40-60 mg/kg/d and corresponding trough concentrations in children with Gram-positive bacterial sepsis from a clinical perspective.MethodsChildren diagnosed with Gram-positive bacterial sepsis and received intravenous vancomycin therapy between January 2017 and June 2020 were enrolled retrospectively. Patients were categorized as success and failure groups according to treatment outcomes. Laboratory, microbiological, and clinical data were collected. The risk factors for treatment failure were analyzed by logistic regression.ResultsIn total, 186 children were included, of whom 167 (89.8%) were enrolled in the success group and 19 (10.2%) in the failure group. The initial and mean vancomycin daily doses in failure group were significantly higher than those in success group [56.9 (IQR =42.1-60.0) vs. 40.5 (IQR =40.0-57.1), P=0.016; 57.0 (IQR =45.8-60.0) vs. 50.0 (IQR =40.0-57.6) mg/kg/d, P=0.012, respectively] and median vancomycin trough concentrations were similar between two groups [6.9 (4.0-12.1) vs.7.3 (4.5-10.6) mg/L, P=0.568)]. Moreover, there was no significant differences in treatment success rate between vancomycin trough concentrations ≤15 mg/L and >15 mg/L (91.2% vs. 75.0%, P=0.064). No vancomycin-related nephrotoxicity adverse effects occurred among all enrolled patients. Multivariate analysis revealed that a PRISM III score ≥10 (OR =15.011; 95% CI: 3.937-57.230; P<0.001) was the only independent clinical factor associated with increased incidence of treatment failure.ConclusionsVancomycin dosages of 40-60 mg/kg/d are effective and have no vancomycin-related nephrotoxicity adverse effects in children with Gram-positive bacterial sepsis. Vancomycin trough concentrations >15 mg/L are not an essential target for these Gram-positive bacterial sepsis patients. PRISM III scores ≥10 may serve as an independent risk factor for vancomycin treatment failure in these patients
Network analyses of upper and lower airway transcriptomes identify shared mechanisms among children with recurrent wheezing and school-age asthma
BackgroundPredicting which preschool children with recurrent wheezing (RW) will develop school-age asthma (SA) is difficult, highlighting the critical need to clarify the pathogenesis of RW and the mechanistic relationship between RW and SA. Despite shared environmental exposures and genetic determinants, RW and SA are usually studied in isolation. Based on network analysis of nasal and tracheal transcriptomes, we aimed to identify convergent transcriptomic mechanisms in RW and SA.MethodsRNA-sequencing data from nasal and tracheal brushing samples were acquired from the Gene Expression Omnibus. Combined with single-cell transcriptome data, cell deconvolution was used to infer the composition of 18 cellular components within the airway. Consensus weighted gene co-expression network analysis was performed to identify consensus modules closely related to both RW and SA. Shared pathways underlying consensus modules between RW and SA were explored by enrichment analysis. Hub genes between RW and SA were identified using machine learning strategies and validated using external datasets and quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Finally, the potential value of hub genes in defining RW subsets was determined using nasal and tracheal transcriptome data.ResultsCo-expression network analysis revealed similarities in the transcriptional networks of RW and SA in the upper and lower airways. Cell deconvolution analysis revealed an increase in mast cell fraction but decrease in club cell fraction in both RW and SA airways compared to controls. Consensus network analysis identified two consensus modules highly associated with both RW and SA. Enrichment analysis of the two consensus modules indicated that fatty acid metabolism-related pathways were shared key signals between RW and SA. Furthermore, machine learning strategies identified five hub genes, i.e., CST1, CST2, CST4, POSTN, and NRTK2, with the up-regulated hub genes in RW and SA validated using three independent external datasets and qRT-PCR. The gene signatures of the five hub genes could potentially be used to determine type 2 (T2)-high and T2-low subsets in preschoolers with RW.ConclusionsThese findings improve our understanding of the molecular pathogenesis of RW and provide a rationale for future exploration of the mechanistic relationship between RW and SA
Methodology and experiences of rapid advice guideline development for children with COVID-19: responding to the COVID-19 outbreak quickly and efficiently
BACKGROUND: Rapid Advice Guidelines (RAG) provide decision makers with guidance to respond to public health emergencies by developing evidence-based recommendations in a short period of time with a scientific and standardized approach. However, the experience from the development process of a RAG has so far not been systematically summarized. Therefore, our working group will take the experience of the development of the RAG for children with COVID-19 as an example to systematically explore the methodology, advantages, and challenges in the development of the RAG. We shall propose suggestions and reflections for future research, in order to provide a more detailed reference for future development of RAGs. RESULT: The development of the RAG by a group of 67 researchers from 11 countries took 50Â days from the official commencement of the work (January 28, 2020) to submission (March 17, 2020). A total of 21 meetings were held with a total duration of 48Â h (average 2.3Â h per meeting) and an average of 16.5 participants attending. Only two of the ten recommendations were fully supported by direct evidence for COVID-19, three recommendations were supported by indirect evidence only, and the proportion of COVID-19 studies among the body of evidence in the remaining five recommendations ranged between 10 and 83%. Six of the ten recommendations used COVID-19 preprints as evidence support, and up to 50% of the studies with direct evidence on COVID-19 were preprints. CONCLUSIONS: In order to respond to public health emergencies, the development of RAG also requires a clear and transparent formulation process, usually using a large amount of indirect and non-peer-reviewed evidence to support the formation of recommendations. Strict following of the WHO RAG handbook does not only enhance the transparency and clarity of the guideline, but also can speed up the guideline development process, thereby saving time and labor costs
Methodology and experiences of rapid advice guideline development for children with COVID-19: responding to the COVID-19 outbreak quickly and efficiently.
BACKGROUND
Rapid Advice Guidelines (RAG) provide decision makers with guidance to respond to public health emergencies by developing evidence-based recommendations in a short period of time with a scientific and standardized approach. However, the experience from the development process of a RAG has so far not been systematically summarized. Therefore, our working group will take the experience of the development of the RAG for children with COVID-19 as an example to systematically explore the methodology, advantages, and challenges in the development of the RAG. We shall propose suggestions and reflections for future research, in order to provide a more detailed reference for future development of RAGs.
RESULT
The development of the RAG by a group of 67 researchers from 11 countries took 50Â days from the official commencement of the work (January 28, 2020) to submission (March 17, 2020). A total of 21 meetings were held with a total duration of 48Â h (average 2.3Â h per meeting) and an average of 16.5 participants attending. Only two of the ten recommendations were fully supported by direct evidence for COVID-19, three recommendations were supported by indirect evidence only, and the proportion of COVID-19 studies among the body of evidence in the remaining five recommendations ranged between 10 and 83%. Six of the ten recommendations used COVID-19 preprints as evidence support, and up to 50% of the studies with direct evidence on COVID-19 were preprints.
CONCLUSIONS
In order to respond to public health emergencies, the development of RAG also requires a clear and transparent formulation process, usually using a large amount of indirect and non-peer-reviewed evidence to support the formation of recommendations. Strict following of the WHO RAG handbook does not only enhance the transparency and clarity of the guideline, but also can speed up the guideline development process, thereby saving time and labor costs
Régularisation spatiale de représentations distribuées de mots
Stimulée par l’usage intensif des téléphones mobiles, l’exploitation conjointe des don-nées textuelles et des données spatiales présentes dans les objets spatio-textuels (p. ex. tweets)est devenue la pierre angulaire à de nombreuses applications comme la recherche de lieux d’attraction. Du point de vue scientifique, ces tâches reposent de façon critique sur la représentation d’objets spatiaux et la définition de fonctions d’appariement entre ces objets. Dans cet article,nous nous intéressons au problème de représentation de ces objets. Plus spécifiquement, confortés par le succès des représentations distribuées basées sur les approches neuronales, nous proposons de régulariser les représentations distribuées de mots (c.-à -d. plongements lexicaux ou word embeddings), pouvant être combinées pour construire des représentations d’objets,grâce à leurs répartitions spatiales. L’objectif sous-jacent est de révéler d’éventuelles relations sémantiques locales entre mots ainsi que la multiplicité des sens d’un même mot. Les expérimentations basées sur une tâche de recherche d’information qui consiste à retourner le lieu physique faisant l’objet (sujet) d’un géo-texte montrent que l’intégration notre méthode de régularisation spatiale de représentations distribuées de mots dans un modèle d’appariement de base permet d’obtenir des améliorations significatives par rapport aux modèles de référence
Dysregulation of iron homeostasis in airways associated with persistent preschool wheezing
Abstract Background Currently, there are no reliable clinical tools available to identify persistent asthma symptoms among preschool children with recurrent wheezing. We investigated iron homeostasis in the airways of preschoolers with recurrent wheezing and assessed whether iron homeostasis-related indices may reliably predict persistent wheezing. Methods Iron levels and mRNA expression levels of iron homeostasis molecules were examined in bronchoalveolar lavage samples from 89 preschoolers with recurrent wheezing and 56 controls, with a 12-month follow-up conducted. Risk factors for persistent wheezing were identified using least absolute shrinkage and selection operator and multivariate logistic regression. The addition of predictive values of iron indices to the modified Asthma Predictive Index (mAPI) or clinical predictors was determined using area under receiver operating characteristic curves (AUC). Results Preschoolers with recurrent wheezing had reduced iron levels in their airways, associated with significantly decreased expression of iron export molecule SLC40A1 and increased expression of iron intake factor TFR1 and iron storage factors FTH and FTL. Risk factors for persistent wheezing included mAPI positivity, iron predictors (lower expression of SLC40A1 and higher expression of FTL), and clinical predictors (aeroallergen sensitivity, shorter breastfeeding duration, and earlier age of first wheezing episode). The addition of information on iron predictors significantly enhanced the power of clinical predictors (AUC: 84%, increase of 12%) and mAPI (AUC: 81%, increase of 14%). Conclusions Iron homeostasis is altered in the airways of preschoolers with recurrent wheezing. Adding information on iron-related indices to clinical information significantly improves accurate prediction of persistent wheezing in preschool-aged children
- …