21 research outputs found

    A novel exact solution of the 2+1-dimensional radial Dirac equation for the generalized Dirac oscillator with the inverse potentials

    Full text link
    The generalized Dirac oscillator as one of the exact solvable model in quantum mechanics was introduced in 2+1-dimensional world in this paper. What is more, the general expressions of the exact solutions for these models with the inverse cubic, quartic, quintic and sixtic power potentials in radial Dirac equation were further given by means of the Bethe ansatz method. And finally, the corresponding exact solutions in this paper were further discussed

    A Novel Exact Solution of the 2+1-Dimensional Radial Dirac Equation for the Generalized Dirac Oscillator with the Inverse Potentials

    No full text
    The generalized Dirac oscillator as one of the exact solvable models in quantum mechanics was introduced in 2+1-dimensional world in this paper. What is more, the general expressions of the exact solutions for these models with the inverse cubic, quartic, quintic, and sixth power potentials in radial Dirac equation were further given by means of the Bethe ansatz method. And finally, the corresponding exact solutions in this paper were further discussed

    Toroidal dipolar bound state in the continuum and antiferromagnetic in asymmetric metasurface

    No full text
    The toroidal dipole (TD) with weak coupling to the electromagnetic fields promises tremendous capability in sensing, light absorption and optical nonlinearities. Here, we analyze the near-field coupling effects of an asymmetric all-dielectric metasurface with an array of high-index Mie-resonant dielectric tetramer cluster. Two distinct optical toroidal dipolar bound states in the continuum are identified from the asymmetric metasurface. One occurs at the internal gap of the tetramer cluster array (intra-cluster toroidal modes), and the other arises from two neighboring clusters (inter-cluster toroidal modes). Via control of the asymmetry of the cluster, the TD could transform from bound states in the continuum into leaky resonances with high-Q factors. The optical antiferromagnetic response could also be identified from the tetramer cluster arrays. The toroidal and antiferromagnetic effects come from the trapped modes with symmetry breaking. These robust responses of the asymmetric metasurface remain stable as the asymmetry degree increases and the polarization of the incident light changes. The proposed metasurface with efficient light-matter interaction serves as a platform for controlling and exploiting optical toroidal and antiferromagnetic excitations

    Metasurface lens with angular modulation for extended depth of focus imaging

    No full text
    The depth of focus (DOF) indicates the tolerance of the imaging displacement. The axial long-focal-depth is significant in practical applications, including optical imaging and communication. The importance of extending the DOF is rapidly growing with the advance of metasurface lenses. Angular modulation, as a promising way to extend the DOF, offers an additional degree of freedom to improve the imaging quality. Here we theoretically and experimentally demonstrate an angular modulated metasurface lens for extended DOF imaging by means of applying the geometrical phase. Unlike previous studies of the geometrical phase, which is sensitive to the polarity of circular polarization incidence, the polarity of circular polarization independence and broadband characteristic of angular modulation yield the potential of robust and efficient extension of the DOF imaging, thus providing novel opportunities for highly integrated optical circuits.National Natural Science Foundation of China (11504034, 61640409, 61965006); Natural Science Foundation of Guangxi Province (2017GXNSFAA198048)

    A DNA tetrahedron-based ferroptosis-suppressing nanoparticle: superior delivery of curcumin and alleviation of diabetic osteoporosis

    No full text
    Abstract Diabetic osteoporosis (DOP) is a significant complication that poses continuous threat to the bone health of patients with diabetes; however, currently, there are no effective treatment strategies. In patients with diabetes, the increased levels of ferroptosis affect the osteogenic commitment and differentiation of bone mesenchymal stem cells (BMSCs), leading to significant skeletal changes. To address this issue, we aimed to target ferroptosis and propose a novel therapeutic approach for the treatment of DOP. We synthesized ferroptosis-suppressing nanoparticles, which could deliver curcumin, a natural compound, to the bone marrow using tetrahedral framework nucleic acid (tFNA). This delivery system demonstrated excellent curcumin bioavailability and stability, as well as synergistic properties with tFNA. Both in vitro and in vivo experiments revealed that nanoparticles could enhance mitochondrial function by activating the nuclear factor E2-related factor 2 (NRF2)/glutathione peroxidase 4 (GPX4) pathway, inhibiting ferroptosis, promoting the osteogenic differentiation of BMSCs in the diabetic microenvironment, reducing trabecular loss, and increasing bone formation. These findings suggest that curcumin-containing DNA tetrahedron-based ferroptosis-suppressing nanoparticles have a promising potential for the treatment of DOP and other ferroptosis-related diseases

    An integrated multi-source energy harvester based on vibration and magnetic field energy

    No full text
    In this paper, an integrated multi-source energy harvester (IMSEH) employing a special shaped cantilever beam and a piezoelectric transducer to convert vibration and magnetic field energy into electrical energy is presented. The electric output performance of the proposed IMSEH has been investigated. Compared to a traditional multi-source energy harvester (MSEH) or single source energy harvester (SSEH), the proposed IMSEH can simultaneously harvest vibration and magnetic field energy with an integrated structure and the electric output is greatly improved. When other conditions keep identical, the IMSEH can obtain high voltage of 12.8V. Remarkably, the proposed IMSEHs have great potential for its application in wireless sensor network
    corecore