156 research outputs found

    Numerical analysis of the influence of design parameters on the efficiency of an OWC axial impulse turbine for wave energy conversion

    Get PDF
    Oscillating water column (OWC) axial impulse turbines permit the conversion of wave energy into electrical power. Unlike other hydropower units with a mature and well established technology, such turbines have been recently developed, there are still few prototypes operating and therefore there is a large space for optimizing its design. Many recent studies focus on the improvement of the efficiency and transient characteristics by means of experimentation and also simulation techniques. In the present paper we use a 3D numerical simulation model (computational fluid dynamics model with ANSYS-Fluent 18) to analyze the influence of different geometrical parameters on the efficiency of the turbine, which have been less discussed yet. A reference configuration case has been used to validate our simulation model by comparing it with previous experimental results. Then, parametric variations in the guide vane number and type, gaps between the rotating and stationary part and hub to tip ratio have been introduced in the model to discuss the influence of these effects. It is found that some of these parameters have an important influence on the efficiency of the turbine and therefore, the results presented in this paper can help to optimize future designs of OWC impulse turbinesPostprint (author's final draft

    Fatigue life estimation of Francis turbines based on experimental strain measurements: Review of the actual data and future trends

    Get PDF
    Due to the massive entrance of new renewable energies such as wind or solar, hydraulic turbines have to work far from its designed point and withstanding multiple transients, such as starts and stops, that shorten the useful life of the machine and cause fatigue damages. The present paper reviews the complex problem of fatigue in Francis turbines particularly focused on the experimental data available for static and dynamic stresses. For this purpose, many researches, which include different Francis turbines covering a wide range of design head and power, have been considered. The experimental stresses characteristics measured with strain gauges installed on the turbine runner and obtained from previous works have been analyzed for the different operating conditions and transient states occurring in the normal life of actual Francis units. The actual computational capabilities and techniques typically used to estimate such stresses have been discussed in detail. Potential future techniques to simplify complex strain measurements on the turbine runner, computational and statistical methods to estimate turbine stresses are reviewed in this paper. Finally, the relative damage of the different operating conditions and useful life estimation of the turbine, based on past strain measurements of the runner, are addressed.Postprint (author's final draft

    A review of pzt patches applications in submerged systems

    Get PDF
    Submerged systems are found in many engineering, biological, and medicinal applications. For such systems, due to the particular environmental conditions and working medium, the research on the mechanical and structural properties at every scale (from macroscopic to nanoscopic), and the control of the system dynamics and induced effects become very difficult tasks. For such purposes in submerged systems, piezoelectric patches (PZTp), which are light, small and economic, have been proved to be a very good solution. PZTp have been recently used as sensors/actuators for applications such as modal analysis, active sound and vibration control, energy harvesting and atomic force microscopes in submerged systems. As a consequence, in these applications, newly developed transducers based on PZTp have become the most used ones, which has improved the state of the art and methods used in these fields. This review paper carefully analyzes and summarizes these applications particularized to submerged structures and shows the most relevant results and findings, which have been obtained thanks to the use of PZTp.Peer ReviewedPostprint (published version

    Numerical Investigation of Pressure Fluctuation Characteristics in a Centrifugal Pump with Variable Axial Clearance

    Get PDF
    Clearance flows in the sidewall gaps of centrifugal pumps are unsteady as well as main flows in the volute casing and impeller, which may cause vibration and noise, and the corresponding pressure fluctuations are related to the axial clearance size. In this paper, unsteady numerical simulations were conducted to predict the unsteady flows within the entire flow passage of a centrifugal pump operating in the design condition. Pressure fluctuation characteristics in the volute casing, impeller, and sidewall gaps were investigated with three axial clearance sizes. Results show that an axial clearance variation affects the pressure fluctuation characteristics in each flow domain by different degree. The greatest pressure fluctuation occurs at the blade pressure surface and is almost not influenced by the axial clearance variation which has a certainly effect on the pressure fluctuation characteristics around the tongue. The maximum pressure fluctuation amplitude in the sidewall gaps is larger than that in the volute casing, and different spectrum characteristics show up in the three models due to the interaction between the clearance flow and the main flow as well as the rotor-stator interaction. Therefore, clearance flow should be taken into consideration in the hydraulic design of centrifugal pumps

    Detection of erosive cavitation on hydraulic turbines through demodulation analysis

    Get PDF
    Erosive cavitation in hydraulic turbines affects severely the runner structure, increasing maintenance costs and reducing the remaining useful life of the component. Actual vibro-acoustic techniques used to detect this kind of cavitation in hydraulic turbines are based on analysing high-frequency vibrations in different parts of the unit. Particularly, the demodulation of high frequency bands has proven to give relevant results regarding the erosive cavitation behaviour. However, demodulation is not absolutely conclusive since the excitation and the transfer function from the excitation to the measuring point, which depend on every particular prototype, are partially unknown. In this paper, the demodulation method to detect erosive cavitation in hydraulic turbines is reviewed and analysed in detail. To do so, first, an experimental study in a test rig in laboratory has been carried out. This test rig is based on a rotating disk instrumented with a piezoelectric patch and with different sensors, such as accelerometers and acoustic emission sensors, in the rotating and stationary parts. Different excitation patterns simulating erosive cavitation have been applied to the rotating disk. These patterns include pseudo-random excitations of different frequency bands modulated by one low carrier frequency, which model the erosive cavitation characteristics. In this way, it is possible to understand how mechanical vibrations similar to those produced by erosive cavitation are transmitted in such complex systems involving fluid and solid mediums. The knowledge obtained in the test rig helps to interpret the results obtained with demodulation analysis in prototypes. Particularly, in this paper these conclusions have been used to analyse erosive cavitation in a real Francis turbine.Peer ReviewedPostprint (author's final draft

    Birthrates and delay times of Type Ia supernovae

    Full text link
    Type Ia supernovae (SNe Ia) play an important role in diverse areas of astrophysics, from the chemical evolution of galaxies to observational cosmology. However, the nature of the progenitors of SNe Ia is still unclear. In this paper, according to a detailed binary population synthesis study, we obtained SN Ia birthrates and delay times from different progenitor models, and compared them with observations. We find that the Galactic SN Ia birthrate from the double-degenerate (DD) model is close to those inferred from observations, while the birthrate from the single-degenerate (SD) model accounts for only about 1/2-2/3 of the observations. If a single starburst is assumed, the distribution of the delay times of SNe Ia from the SD model is a weak bimodality, where the WD + He channel contributes to the SNe Ia with delay times shorter than 100Myr, and the WD + MS and WD + RG channels to those with age longer than 1Gyr.Comment: 11 pages, 2 figures, accepted by Science in China Series G (Dec.30, 2009

    Insight-HXMT on-orbit thermal control status and thermal deformation impact analysis

    Full text link
    Purpose: The Hard X-ray Modulation Telescope is China's first X-ray astronomy satellite launched on June 15th, 2017, dubbed Insight-HXMT. Active and passive thermal control measures are employed to keep devices at suitable temperatures. In this paper, we analyzed the on-orbit thermal monitoring data of the first 5 years and investigated the effect of thermal deformation on the point spread function (PSF) of the telescopes. Methods: We examined the data of the on-orbit temperatures measured using 157 thermistors placed on the collimators, detectors and their support structures and compared the results with the thermal control requirements. The thermal deformation was evaluated by the relative orientation of the two star sensors installed on the main support structure. its effect was estimated with evolution of the PSF obtained with calibration scanning observations of the Crab nebula. Conclusion: The on-orbit temperatures met the thermal control requirements thus far, and the effect of thermal deformation on the PSF was negligible after the on-orbit pointing calibration.Comment: 25 pages, 35 figures, submitte

    Efficacy and safety of stem cell therapy in cerebral palsy: A systematic review and meta-analysis

    Get PDF
    Aim: Although the efficacy and safety of stem cell therapy for cerebral palsy has been demonstrated in previous studies, the number of studies is limited and the treatment protocols of these studies lack consistency. Therefore, we included all relevant studies to date to explore factors that might influence the effectiveness of treatment based on the determination of safety and efficacy.Methods: The data source includes PubMed/Medline, Web of Science, EMBASE, Cochrane Library, from inception to 2 January 2022. Literature was screened according to the PICOS principle, followed by literature quality evaluation to assess the risk of bias. Finally, the outcome indicators of each study were extracted for combined analysis.Results: 9 studies were included in the current analysis. The results of the pooled analysis showed that the improvements in both primary and secondary indicators except for Bayley Scales of Infant and Toddler Development were more skewed towards stem cell therapy than the control group. In the subgroup analysis, the results showed that stem cell therapy significantly increased Gross Motor Function Measure (GMFM) scores of 3, 6, and 12 months. Besides, improvements in GMFM scores were more skewed toward umbilical cord mesenchymal stem cells, low dose, and intrathecal injection. Importantly, there was no significant difference in the adverse events (RR = 1.13; 95% CI = [0.90, 1.42]) between the stem cell group and the control group.Conclusion: The results suggested that stem cell therapy for cerebral palsy was safe and effective. Although the subgroup analysis results presented guiding significance in the selection of clinical protocols for stem cell therapy, high-quality RCTs validations are still needed

    Terahertz All-Optical Modulation in a Silicon-Polymer Hybrid System

    Get PDF
    Although Gigahertz-scale free-carrier modulators have been previously demonstrated in silicon, intensity modulators operating at Terahertz speeds have not been reported because of silicon's weak ultrafast optical nonlinearity. We have demonstrated intensity modulation of light with light in a silicon-polymer integrated waveguide device, based on the all-optical Kerr effect - the same ultrafast effect used in four-wave mixing. Direct measurements of time-domain intensity modulation are made at speeds of 10 GHz. We showed experimentally that the ultrafast mechanism of this modulation functions at the optical frequency through spectral measurements, and that intensity modulation at frequencies in excess of 1 THz can be obtained in this device. By integrating optical polymers through evanescent coupling to high-mode-confinement silicon waveguides, we greatly increase the effective nonlinearity of the waveguide for cross-phase modulation. The combination of high mode confinement, multiple integrated optical components, and high nonlinearities produces all-optical ultrafast devices operating at continuous-wave power levels compatible with telecommunication systems. Although far from commercial radio frequency optical modulator standards in terms of extinction, these devices are a first step in development of large-scale integrated ultrafast optical logic in silicon, and are two orders of magnitude faster than previously reported silicon devices.Comment: Under consideration at Nature Material
    • …
    corecore