83 research outputs found

    Spatially resolved Spectro-photometry of M81: Age, Metallicity and Reddening Maps

    Full text link
    In this paper, we present a multi-color photometric study of the nearby spiral galaxy M81, using images obtained with the Beijing Astronomical Observatory 60/90 cm Schmidt Telescope in 13 intermediate-band filters from 3800 to 10000{\AA}. The observations cover the whole area of M81 with a total integration of 51 hours from February 1995 to February 1997. This provides a multi-color map of M81 in pixels of 1\arcsec.7 \times 1\arcsec.7. Using theoretical stellar population synthesis models, we demonstrate that some BATC colors and color indices can be used to disentangle the age and metallicity effect. We compare in detail the observed properties of M81 with the predictions from population synthesis models and quantify the relative chemical abundance, age and reddening distributions for different components of M81. We find that the metallicity of M81 is about Z=0.03Z=0.03 with no significant difference over the whole galaxy. In contrast, an age gradient is found between stellar populations of the central regions and of the bulge and disk regions of M81: the stellar population in its central regions is older than 8 Gyr while the disk stars are considerably younger, ∌2\sim 2 Gyr. We also give the reddening distribution in M81. Some dust lanes are found in the galaxy bulge region and the reddening in the outer disk is higher than that in the central regions.Comment: Accepted for publication in AJ (May 2000 issue). 27 pages including 6 figures. Uses AASTeX aasms4 styl

    The Baker's Yeast Diploid Genome Is Remarkably Stable in Vegetative Growth and Meiosis

    Get PDF
    Accurate estimates of mutation rates provide critical information to analyze genome evolution and organism fitness. We used whole-genome DNA sequencing, pulse-field gel electrophoresis, and comparative genome hybridization to determine mutation rates in diploid vegetative and meiotic mutation accumulation lines of Saccharomyces cerevisiae. The vegetative lines underwent only mitotic divisions while the meiotic lines underwent a meiotic cycle every ∌20 vegetative divisions. Similar base substitution rates were estimated for both lines. Given our experimental design, these measures indicated that the meiotic mutation rate is within the range of being equal to zero to being 55-fold higher than the vegetative rate. Mutations detected in vegetative lines were all heterozygous while those in meiotic lines were homozygous. A quantitative analysis of intra-tetrad mating events in the meiotic lines showed that inter-spore mating is primarily responsible for rapidly fixing mutations to homozygosity as well as for removing mutations. We did not observe 1–2 nt insertion/deletion (in-del) mutations in any of the sequenced lines and only one structural variant in a non-telomeric location was found. However, a large number of structural variations in subtelomeric sequences were seen in both vegetative and meiotic lines that did not affect viability. Our results indicate that the diploid yeast nuclear genome is remarkably stable during the vegetative and meiotic cell cycles and support the hypothesis that peripheral regions of chromosomes are more dynamic than gene-rich central sections where structural rearrangements could be deleterious. This work also provides an improved estimate for the mutational load carried by diploid organisms

    Methylprednisolone as Adjunct to Endovascular Thrombectomy for Large-Vessel Occlusion Stroke

    Get PDF
    Importance It is uncertain whether intravenous methylprednisolone improves outcomes for patients with acute ischemic stroke due to large-vessel occlusion (LVO) undergoing endovascular thrombectomy. Objective To assess the efficacy and adverse events of adjunctive intravenous low-dose methylprednisolone to endovascular thrombectomy for acute ischemic stroke secondary to LVO. Design, Setting, and Participants This investigator-initiated, randomized, double-blind, placebo-controlled trial was implemented at 82 hospitals in China, enrolling 1680 patients with stroke and proximal intracranial LVO presenting within 24 hours of time last known to be well. Recruitment took place between February 9, 2022, and June 30, 2023, with a final follow-up on September 30, 2023.InterventionsEligible patients were randomly assigned to intravenous methylprednisolone (n = 839) at 2 mg/kg/d or placebo (n = 841) for 3 days adjunctive to endovascular thrombectomy. Main Outcomes and Measures The primary efficacy outcome was disability level at 90 days as measured by the overall distribution of the modified Rankin Scale scores (range, 0 [no symptoms] to 6 [death]). The primary safety outcomes included mortality at 90 days and the incidence of symptomatic intracranial hemorrhage within 48 hours. Results Among 1680 patients randomized (median age, 69 years; 727 female [43.3%]), 1673 (99.6%) completed the trial. The median 90-day modified Rankin Scale score was 3 (IQR, 1-5) in the methylprednisolone group vs 3 (IQR, 1-6) in the placebo group (adjusted generalized odds ratio for a lower level of disability, 1.10 [95% CI, 0.96-1.25]; P = .17). In the methylprednisolone group, there was a lower mortality rate (23.2% vs 28.5%; adjusted risk ratio, 0.84 [95% CI, 0.71-0.98]; P = .03) and a lower rate of symptomatic intracranial hemorrhage (8.6% vs 11.7%; adjusted risk ratio, 0.74 [95% CI, 0.55-0.99]; P = .04) compared with placebo. Conclusions and Relevance Among patients with acute ischemic stroke due to LVO undergoing endovascular thrombectomy, adjunctive methylprednisolone added to endovascular thrombectomy did not significantly improve the degree of overall disability.Trial RegistrationChiCTR.org.cn Identifier: ChiCTR210005172

    Research on Feature Extracted Method for Flutter Test Based on EMD and CNN

    No full text
    Due to the inevitable deviations between the results of theoretical calculations and physical experiments, flutter tests and flutter signal analysis often play significant roles in designing the aeroelasticity of a new aircraft. The measured structural response from aeroelastic models in both wind tunnel tests and real fight flutter tests contain an abundance of structural information, but traditional methods tend to have limited ability to extract features of concern. Inspired by deep learning concepts, a novel feature extraction method for flutter signal analysis was established in this study by combining the convolutional neural network (CNN) with empirical mode decomposition (EMD). It is widely hypothesized that when flutter occurs, the measured structural signals are harmonic or divergent in the time domain, and that the flutter modal (1) is singular and (2) its energy increases significantly in the frequency domain. A measured-signal feature extraction and flutter criterion framework was constructed accordingly. The measured signals from a wind tunnel test were manually labeled “flutter” and “no-flutter” as the foundational dataset for the deep learning algorithm. After the normalized preprocessing, the intrinsic mode functions (IMFs) of the flutter test signals are obtained by the EMD method. The IMFs are then reshaped to make them the suitable size to be input to the CNN. The CNN parameters are optimized though the training dataset, and the trained model is validated through the test dataset (i.e., cross-validation). The accuracy rate of the proposed method reached 100% on the test dataset. The training model appears to effectively distinguish whether or not the structural response signal contains flutter. The combination of EMD and CNN provides effective feature extraction of time series signals in flutter test data. This research explores the connection between structural response signals and flutter from the perspective of artificial intelligence. The method allows for real-time, online prediction with low computational complexity
    • 

    corecore