29 research outputs found

    Cholinergic Regulation of Hippocampal Theta Rhythm

    No full text
    Cholinergic regulation of hippocampal theta rhythm has been proposed as one of the central mechanisms underlying hippocampal functions including spatial memory encoding. However, cholinergic transmission has been traditionally associated with atropine-sensitive type II hippocampal theta oscillations that occur during alert immobility or in urethane-anesthetized animals. The role of cholinergic regulation of type I theta oscillations in behaving animals is much less clear. Recent studies strongly suggest that both cholinergic muscarinic and nicotinic receptors do actively regulate type I hippocampal theta oscillations and thus provide the cholinergic mechanism for theta-associated hippocampal learning. Septal cholinergic activation can regulate hippocampal circuit and theta expression either through direct septohippocampal cholinergic projections, or through septal glutamatergic and GABAergic neurons, that can precisely entrain hippocampal theta rhythmicity

    RGS4 Modulates Serotonin Signaling in Prefrontal Cortex and Links to Serotonin Dysfunction in a Rat Model of Schizophrenia

    No full text

    Glycogen Synthase Kinase 3 Regulates N

    No full text

    Hippocampus and Entorhinal Cortex Recruit Cholinergic and NMDA Receptors Separately to Generate Hippocampal Theta Oscillations

    No full text
    Summary: Although much progress has been made in understanding type II theta rhythm generation under urethane anesthesia, less is known about the mechanisms underlying type I theta generation during active exploration. To better understand the contributions of cholinergic and NMDA receptor activation to type I theta generation, we recorded hippocampal theta oscillations from freely moving mice with local infusion of cholinergic or NMDA receptor antagonists to either the hippocampus or the entorhinal cortex (EC). We found that cholinergic receptors in the hippocampus, but not the EC, and NMDA receptors in the EC, but not the hippocampus, are critical for open-field theta generation and Y-maze performance. We further found that muscarinic M1 receptors located on pyramidal neurons, but not interneurons, are critical for cholinergic modulation of hippocampal synapses, theta generation, and Y-maze performance. These results suggest that hippocampus and EC neurons recruit cholinergic-dependent and NMDA-receptor-dependent mechanisms, respectively, to generate theta oscillations to support behavioral performance. : Gu et al. find that the entorhinal cortex and hippocampus recruit NMDA-receptor-dependent and cholinergic-dependent mechanisms, respectively, to generate hippocampal theta oscillations in freely moving mice. Muscarinic M1 receptors on pyramidal neurons are important for theta generation, providing potential cellular mechanisms underlying theta generation. Keywords: theta, hippocampus, entorhinal cortex, NMDA receptor, cholinergic receptor, muscarinic, medial septum, Y-maz

    Activation of Dopamine D 4

    No full text

    Aqueous Extract of Semen Ziziphi Spinosae Exerts Anxiolytic Effects during Nicotine Withdrawal via Improvement of Amygdaloid CRF/CRF1R Signaling

    No full text
    Anxiety during nicotine withdrawal (NicW) is a key risk factor for smoking relapse. Semen Ziziphi Spinosae (SZS), which is a prototypical hypnotic-sedative herb in Oriental medicine, has been clinically used to treat insomnia and general anxiety disorders for thousands of years. Thus, the present study evaluated the effects of the aqueous extract of SZS (AESZS) on NicW-induced anxiety in male rats that received subcutaneous administrations of nicotine (Nic) (0.4 mg/kg, twice a day) for 7 d followed by 4 d of withdrawal. During NicW, the rats received four intragastric treatments of AESZS (60 mg/kg/d or 180 mg/kg/d). AESZS dose-dependently attenuated NicW-induced anxiety-like behaviors in the elevated plus maze (EPM) tests and 180 mg/kg/d AESZS inhibited NicW-induced increases in plasma corticosterone. Additionally, the protein and mRNA expressions of corticotropin-releasing factor (CRF) and CRF type 1 receptor (CRF1R) increased in the central nucleus of the amygdala (CeA) during NicW, but these changes were suppressed by 180 mg/kg/d AESZS. A post-AESZS infusion of CRF into the CeA abolished the attenuation of anxiety by AESZS and 180 mg/kg/d AESZS suppressed NicW-induced increases in norepinephrine and 3-methoxy-4-hydroxy-phenylglycol levels in the CeA. The present results suggest that AESZS ameliorated NicW-induced anxiety via improvements in CRF/CRF1R and noradrenergic signaling in the CeA
    corecore