77 research outputs found

    Observation of a charged charmoniumlike structure in e+e(DDˉ)±πe^+e^- \to (D^{*} \bar{D}^{*})^{\pm} \pi^\mp at s=4.26\sqrt{s}=4.26GeV

    Full text link
    We study the process e+e(DDˉ)±πe^+e^- \to (D^{*} \bar{D}^{*})^{\pm} \pi^\mp at a center-of-mass energy of 4.26GeV using a 827pb1^{-1} data sample obtained with the BESIII detector at the Beijing Electron Positron Collider. Based on a partial reconstruction technique, the Born cross section is measured to be (137±9±15)(137\pm9\pm15)pb. We observe a structure near the (DDˉ)±(D^{*} \bar{D}^{*})^{\pm} threshold in the π\pi^\mp recoil mass spectrum, which we denote as the Zc±(4025)Z^{\pm}_c(4025). The measured mass and width of the structure are (4026.3±2.6±3.7)(4026.3\pm2.6\pm3.7)MeV/c2^2 and (24.8±5.6±7.7)(24.8\pm5.6\pm7.7)MeV, respectively. Its production ratio σ(e+eZc±(4025)π(DDˉ)±π)σ(e+e(DDˉ)±π)\frac{\sigma(e^+e^-\to Z^{\pm}_c(4025)\pi^\mp \to (D^{*} \bar{D}^{*})^{\pm} \pi^\mp)}{\sigma(e^+e^-\to (D^{*} \bar{D}^{*})^{\pm} \pi^\mp)} is determined to be 0.65±0.09±0.060.65\pm0.09\pm0.06. The first uncertainties are statistical and the second are systematic.Comment: 7 pages, 4 figures, 1 table; version accepted to be published in PR

    Search for the Lepton Flavor Violation Process J/ψeμJ/\psi \to e\mu at BESIII

    Get PDF
    We search for the lepton-flavor-violating decay of the J/ψJ/\psi into an electron and a muon using (225.3±2.8)×106(225.3\pm2.8)\times 10^{6} J/ψJ/\psi events collected with the BESIII detector at the BEPCII collider. Four candidate events are found in the signal region, consistent with background expectations. An upper limit on the branching fraction of B(J/ψeμ)<1.5×107\mathcal{B}(J/\psi \to e\mu)< 1.5 \times 10^{-7} (90% C.L.) is obtained

    Search for Baryonic Decays of \psi(3770) and \psi(4040)

    Full text link
    By analyzing data samples of 2.9 fb^{-1} collected at \sqrt s=3.773 GeV, 482 pb^{-1} collected at \sqrt s=4.009 GeV and 67 pb^{-1} collected at \sqrt s=3.542, 3.554, 3.561, 3.600 and 3.650 GeV with the BESIII detector at the BEPCII storage ring, we search for \psi(3770) and \psi(4040) decay to baryonic final states, including \Lambda\bar\Lambda\pi^+\pi^-, \Lambda \bar\Lambda\pi^0, \Lambda\bar\Lambda\eta, \Sigma^+ \bar\Sigma^-, \Sigma^0 \bar\Sigma^0, \Xi^-\bar\Xi^+ and \Xi^0\bar\Xi^0 decays. None are observed, and upper limits are set at the 90% confidence level.Comment: 9 pages, 3 figure

    Boosting with an aerosolized Ad5-nCoV elicited robust immune responses in inactivated COVID-19 vaccines recipients

    Get PDF
    IntroductionThe SARS-CoV-2 Omicron variant has become the dominant SARS-CoV-2 variant and exhibits immune escape to current COVID-19 vaccines, the further boosting strategies are required.MethodsWe have conducted a non-randomized, open-label and parallel-controlled phase 4 trial to evaluate the magnitude and longevity of immune responses to booster vaccination with intramuscular adenovirus vectored vaccine (Ad5-nCoV), aerosolized Ad5-nCoV, a recombinant protein subunit vaccine (ZF2001) or homologous inactivated vaccine (CoronaVac) in those who received two doses of inactivated COVID-19 vaccines. ResultsThe aerosolized Ad5-nCoV induced the most robust and long-lasting neutralizing activity against Omicron variant and IFNg T-cell response among all the boosters, with a distinct mucosal immune response. SARS-CoV-2-specific mucosal IgA response was substantially generated in subjects boosted with the aerosolized Ad5-nCoV at day 14 post-vaccination. At month 6, participants boosted with the aerosolized Ad5-nCoV had remarkably higher median titer and seroconversion of the Omicron BA.4/5-specific neutralizing antibody than those who received other boosters. DiscussionOur findings suggest that aerosolized Ad5-nCoV may provide an efficient alternative in response to the spread of the Omicron BA.4/5 variant.Clinical trial registrationhttps://www.chictr.org.cn/showproj.html?proj=152729, identifier ChiCTR2200057278

    Contrasting Thermoelectric Transport Behaviors of p-Type PbS Caused by Doping Alkali Metals (Li and Na)

    No full text
    PbS is a latent substitute of PbTe thermoelectric materials, which is on account of its superiority in low cost and earth abundance. Here, the thermoelectric transport properties of p-type PbS by doping alkali metals (Na and Li) are investigated and it is verified that Li is a more effective dopant than Na. By introducing Li, the electrical and thermal transport properties were optimized collectively. The electrical transport properties were boosted remarkably via adjusting carrier concentration, and the maximum power factor (PFmax) of ~11.5 μW/cmK2 and average power factor (PFave) ~9.9 μW/cmK2 between 423 and 730 K in Pb0.99Li0.01S were achieved, which are much higher than those (~9.5 and ~7.7 μW/cmK2) of Pb0.99Na0.01S. Doping Li and Na can weaken the lattice thermal conductivity effectively. Combining the enlarged PF with suppressed total thermal conductivity, a maximum ZT ~0.5 at 730 K and a large average ZT ~0.4 at 423-730 K were obtained in p-type Pb0.99Li0.01S, which are higher than ~0.4 and ~0.3 in p-type Pb0.99Na0.01S, respectively

    Stability of aerobic granular sludge for treating inorganic wastewater with different nitrogen loading rates

    No full text
    This paper investigated the effect of nitrogen loading rates (NLRs) on stability of aerobic granular sludge (AGS) for treating simulated ionic rare earth mine wastewater with high ammonia nitrogen and extremely low organic content. Mature AGS from a sequencing batch reactor (SBR) was seeded into five identical SBRs (R1, R2, R3, R4 and R5). The five reactors were operated with different NLRs (0.2, 0.4, 0.8, 1.2 and 1.6 kg/m3·d). After 30 days of operation, R1, R2 and R5 were dominated by broken granules, while most of the granules in R3 and R4 still maintained a complete structure. The properties of granules from R1, R2, R3, R4 and R5 deteriorated to varying degrees, while the granules from R3 and R4 showed better stability than that from R1, R2 and R5. In R1, R2, R3 and R4, the steady-state ammonia nitrogen removal efficiencies were all greater than 90%, and the steady-state removal efficiencies of total inorganic nitrogen (TIN) were approximately 30%. In R5, the removal efficiencies of ammonia nitrogen and TIN were both approximately 70%. The dominant nitrifying and denitrifying bacterial genera of the granules from the five reactors were Nitrosomonas and Thauera, respectively, and their relative abundance was much higher in granules from R3 and R4. The results demonstrated that a relative equilibrium between the growth and metabolism of nitrifying/denitrifying bacteria was achieved when NLR was between 0.8 and 1.2 kg/m3·d, which could provide technical support for the stability maintenance of AGS in the treatment of ionic rare earth mine wastewater.</p

    Recent Advances in g-C<sub>3</sub>N<sub>4</sub>-Based Photocatalysts for NO<sub>x</sub> Removal

    No full text
    Nitrogen oxides (NOx) pollutants can cause a series of environmental issues, such as acid rain, ground-level ozone pollution, photochemical smog and global warming. Photocatalysis is supposed to be a promising technology to solve NOx pollution. Graphitic carbon nitride (g-C3N4) as a metal-free photocatalyst has attracted much attention since 2009. However, the pristine g-C3N4 suffers from poor response to visible light, rapid charge carrier recombination, small specific surface areas and few active sites, which results in deficient solar light efficiency and unsatisfactory photocatalytic performance. In this review, we summarize and highlight the recent advances in g-C3N4-based photocatalysts for photocatalytic NOx removal. Firstly, we attempt to elucidate the mechanism of the photocatalytic NOx removal process and introduce the metal-free g-C3N4 photocatalyst. Then, different kinds of modification strategies to enhance the photocatalytic NOx removal performance of g-C3N4-based photocatalysts are summarized and discussed in detail. Finally, we propose the significant challenges and future research topics on g-C3N4-based photocatalysts for photocatalytic NOx removal, which should be further investigated and resolved in this interesting research field

    Effect of In Situ Ultrasonic Wave and Influent Ammonia Nitrogen Fluctuation on Stability of Aerobic Granular Sludge

    No full text
    This study elucidates the impact of fluctuating influent conditions and in situ ultrasonic wave exposure on the stability of aerobic granular sludge (AGS) in the treatment of simulated wastewater emanating from rare earth mining operations. During a stable influent period spanning from Day 1 to Day 95, the seed granules underwent an initial disintegration followed by a re-granulation phase. The secondary granulation was achieved on Day 80 and Day 40 for the ultrasonic reactor (R1) and the control reactor (R2), respectively. Notably, granules formed in R1 exhibited a more porous structure compared to those generated in R2. Subsequently, when the ammonia nitrogen in the influent oscillated between 100 and 500 mg/L during Days 96-140, both reactors yielded compact and densely structured granules. Nitrogen removal profiles were comparable between the two reactors: the removal efficiencies for ammonia nitrogen and total inorganic nitrogen escalated from 95% and 80%, respectively, during Days 1-95, to 95% and 90%, respectively, post-Day 140. A suite of performance metrics indicated that steady-state granules from R1 outperformed those from R2 across several parameters. Specifically, the nitrification/denitrification rates, and relative abundance of denitrifying bacteria were all higher in granules from R1. Conversely, the relative abundance of nitrifying bacteria was comparable between granules from both reactors. However, R1 granules demonstrated lower sludge concentration and smaller average particle size than their R2 counterparts. In conclusion, the AGS system demonstrated robust resilience to fluctuating ammonia nitrogen, and the application of ultrasonic waves significantly enhanced granular activity while achieving in situ sludge reduction.</p
    corecore