61 research outputs found

    Electric Vehicle Routing Problem with Charging Time and Variable Travel Time

    Get PDF
    An electric vehicle routing problem with charging time and variable travel time is developed to address some operational issues such as range limitation and charging demand. The model is solved by using genetic algorithm to obtain the routes, the vehicle departure time at the depot, and the charging plan. Meanwhile, a dynamic Dijkstra algorithm is applied to find the shortest path between any two adjacent nodes along the routes. To prevent the depletion of all battery power and ensure safe operation in transit, electric vehicles with insufficient battery power can be repeatedly recharged at charging stations. The fluctuations in travel time are implemented to reflect a dynamic traffic environment. In conclusion, a large and realistic case study with a road network in the Beijing urban area is conducted to evaluate the model performance and the solution technology and analyze the results

    Optimal timetable development for community shuttle network with metro stations

    No full text
    This paper investigates an issue for optimizing synchronized timetable for community shuttles linked with metro service. Considering a passenger arrival distribution, the problem is formulated to optimize timetables for multiple community shuttle routes, with the objective of minimizing passenger’s schedule delay cost and transfer cost. Two constraints, i.e., vehicle capacity and fleet size, are modeled in this paper. The first constraint is treated as soft, and the latter one is handled by a proposed timetable generating method. Two algorithms are employed to solve the problem, i.e., a genetic algorithm (GA) and a Frank–Wolfe algorithm combined with a heuristic algorithm of shifting departure times (FW-SDT). FW-SDT is an algorithm specially designed for this problem. The simulated and real-life examples confirm the feasibility of the two algorithms, and demonstrate that FW-SDT outperforms GA in both accuracy and effectiveness

    Exploring the Intermodal Relationship between Taxi and Subway in Beijing, China

    No full text
    Taxi is an indispensable mode in the urban public transportation. Although many studies have explored the travel patterns of taxi trips, few have combined taxi and subway to reveal their intermodal relationship. To bridge the gap, this study utilized taxi’s trajectory data to investigate its relationship with subway. Considering the multifaceted relationship between taxi and subway in operation, taxi trips are categorized into three types, namely, subway-competing, subway-extending, and subway-complementing taxi trips. The characteristics of each type of taxi trips reflect the specialties and their interactions with subway. The origin/destination distributions of taxi and subway trips are compared and analyzed. Furthermore, the supply and demand of taxi within the buffer zone of each subway station are analyzed to reflect the difficulty of hailing taxis. The negative binomial regression models are used to explore the relationship between taxi trips and subway ridership. The results show that there is a significantly positive correlation between taxi trips and subway ridership

    Measuring Taxi Accessibility Using Grid-Based Method with Trajectory Data

    No full text
    Accessibility has drawn extensive attention from city planners and transportation researchers for decades. With the benefits of large-scale and varying time, this study aims to combine the taxi global positioning system (GPS) data with a cumulative opportunity measure to calculate taxi accessibility in Beijing, China. As traffic conditions vary significantly over time and space, we select four typical time periods and introduce a grid-based method to divide the study area into grid cells. Both the GPS signals and opportunities that include the constant points of interest, total drop-offs, and dynamic drop-offs, are aggregated in these grid cells. The cumulative opportunity measure counts all reachable grid cells within the given travel time threshold, along with the corresponding opportunities. The results demonstrate that the accessibility varies in the four time periods, with better performance seen in the late-night hours. Although the spatial distributions of the three kinds of opportunities are different, these accessibilities show great similarity. In addition, the relative accessibilities of different measures are highly correlated. In general, grid cells with higher accessibilities in one time period are likely to also have higher accessibilities in other time periods. Moreover, the results suggest that taxi accessibility can be measured from its trajectory data only

    Selfish routing equilibrium in stochastic traffic network: A probability-dominant description.

    No full text
    This paper suggests a probability-dominant user equilibrium (PdUE) model to describe the selfish routing equilibrium in a stochastic traffic network. At PdUE, travel demands are only assigned to the most dominant routes in the same origin-destination pair. A probability-dominant rerouting dynamic model is proposed to explain the behavioral mechanism of PdUE. To facilitate applications, the logit formula of PdUE is developed, of which a well-designed route set is not indispensable and the equivalent varitional inequality formation is simple. Two routing strategies, i.e., the probability-dominant strategy (PDS) and the dominant probability strategy (DPS), are discussed through a hypothetical experiment. It is found that, whether out of insurance or striving for perfection, PDS is a better choice than DPS. For more general cases, the conducted numerical tests lead to the same conclusion. These imply that PdUE (rather than the conventional stochastic user equilibrium) is a desirable selfish routing equilibrium for a stochastic network, given that the probability distributions of travel time are available to travelers

    Reproductive organ and young tissues show constrained elemental composition in Arabidopsis thaliana

    No full text
    Background and Aims The identification of stoichiometric homeostasis is crucial for understanding plant adaptive strategies under a changing environment. However, current knowledge of plant stoichiometric homeostasis has mainly been obtained from mature leaves, with little from other organs across different developmental stages. Methods We conducted a greenhouse nitrogen (N) and phosphorus (P) addition experiment to evaluate the strength of stoichiometric homeostasis across different organs and developmental stages of Arabidopsis thaliana. Key Results Homeostatic regulation coefficients (H) for N (H-N), P (H-P) and N : P ratio (H-NP) were highest in reproductive tissue, followed by stem and leaf at the same stage. All H parameters in the same organ decreased significantly over the developmental stages. Leaf H-N, H-P and H-NP were highest at stage 1, followed by stages 2 and 3. Both stem and silique at stage 2 relative to stage 3 had higher H-N, H-P and H-NP. These results suggested that reproductive tissue relative to other organs and young tissue relative to old tissue showed more constrained elemental composition in response to nutrient availabilities, and such trends were also evidenced by stoichiometric scaling relationships. Conclusions Our findings highlight that stoichiometric homeostasis is tightly related to the ontogenesis of plant tissue. These results could have a strong implication for diagnosing relative availabilities of N and P in ecosystems, suggesting that the N and P stoichiometry of old tissues might be stronger indicators of nutrient status for plants, but further study is needed to test the generality across species with more distinguishable functional traits

    Antifungal Activity of Isolated Bacillus amyloliquefaciens SYBC H47 for the Biocontrol of Peach Gummosis.

    No full text
    The gummosis disease is caused by Botryosphaeria dothidea (Moug. ex. Fr) Ces. et de Not., and it is one of the most important diseases of stone fruits worldwide. The use of biocontrol as an alternative approach to synthetic chemical fungicides has aroused general concern about how to control plant diseases that are caused by phytopathogens. The aim of this study is to isolate Bacillus strains from raw honeys with the capacity to inhibit B. dothidea and to explore the mechanisms by which they could be used in the biocontrol of peach gummosis. Bacillus amyloliquefaciens SYBC H47 was isolated and identified on the basis of its physiological and biochemical characteristics and its 16S rRNA and gyrB gene sequences. The cell suspension and the cell-free supernatant of its culture showed significant antifungal activity against Aspergillus niger, Mucor racemosus, Fusarium oxysporum, Penicillium citrinum, and Candida albicans by agar-diffusion assays. The primary antifungal substances were bacillomycin L, fengycin, and surfactin, which were analyzed by HPLC LC/ESI-MS/MS. Bacillomycin L showed the best inhibitory effect against conidial germination of B. dothidea, followed by fengycin and surfactin. Surfactin had limited effects on mycelial growth, contrary to those of bacillomycin L and fengycin. However, a mixture of the three lipopeptides had a synergistic effect that disrupted the structure of the conidia and mycelia. In order to reduce the production cost, the use of waste frying peanut oil and soy oil as the sole carbon source increased the lipopeptide yield levels by approximately 17% (2.42 g/L) and 110% (4.35 g/L), respectively. In a field trial, the decreases in the infected gummosis rate (IGR) and the disease severity index (DSI) through cell suspension treatments were 20% and 57.5% (in 2014), respectively, and 40% and 57.5% (in 2015), respectively, in comparison with the control. In conclusion, B. amyloliquefaciens SYBC H47 could inhibit the germination of conidia and the growth of mycelia from B. dothidea; therefore, this strain behaves as a potential biocontrol agent against the gummosis disease

    Structural and Functional Analysis of the Only Two Pyridoxal 5′-Phosphate-Dependent Fold Type IV Transaminases in Bacillus altitudinis W3

    No full text
    Aminotransferases are employed as industrial biocatalysts to produce chiral amines with high enantioselectivity and yield. BpTA-1 and BpTA-2 are the only two pyridoxal 5′-phosphate-dependent fold type IV transaminase enzymes in Bacillus altitudinis W3. Herein, we compared the structures and biochemical characteristics of BpTA-1 and BpTA-2 using bioinformatic analysis, circular dichroism spectroscopy, atomic force microscopy and other approaches. BpTA-1 and BpTA-2 are similar overall; both form homodimers and utilize a catalytic lysine. However, there are distinct differences in the substrate cofactor-binding pocket, molecular weight and the proportion of the secondary structure. Both enzymes have the same stereoselectivity but different enzymatic properties. BpTA-2 is more active under partial alkaline and ambient temperature conditions and BpTA-1 is more sensitive to pH and temperature. BpTA-2 as novel enzyme not only fills the building blocks of transaminase but also has broader industrial application potential for (R)-α-phenethylamines than BpTA-1. Structure-function relationships were explored to assess similarities and differences. The findings lay the foundation for modifying these enzymes via protein engineering to enhance their industrial application potential
    • …
    corecore