48 research outputs found

    Coupled Photonic Crystal Micro-Cavities With Ultra-Low Threshold Power For Stiumulated Raman Scattering

    Get PDF
    We propose coupled cavities to realize a strong enhancement of the Raman scattering. Five sub cavities are embedded in the photonic crystals. Simulations through finite-difference time-domain (FDTD) method demonstrate that one cavity, which is used to propagate the pump beam at the optical-communication wavelength, has a Q factor as high as 1.254 × 108 and modal volume as small as 0.03μm3 (0.3192(λ/n)3). These parameters result in ultra-small threshold lasing power ~17.7nW and 2.58nW for Stokes and anti-Stokes respectively. The cavities are designed to support the required Stokes and anti-Stokes modal spacing in silicon. The proposed structure has the potential for sensor devices, especially for biological and medical diagnoses

    Low Threshold, Wide Dynamic Range, Tunable, All-Optical Self-Modulator Based on Fano Resonance and Out-of-Plane Coupling in a Slab Photonic Crystal with a Graphene Layer

    Get PDF
    We demonstrate an all-optical modulator based on self-modulation in a one-dimensional slab photonic crystal (PhC) by using optical Kerr nonlinearity of graphene and Fano resonance effect. It has been shown that the effect of Fano resonance in a one-dimensional slab PhC for intensity enhancement can provide low threshold (~1 MW/cm2), high frequency (>1 THz), and wide dynamic range (>3 THz) tunability for the all-optical self-modulator. Such a self-modulator can find applications in optical pulse generations, optical clocks, frequency shifting, and so forth

    Surface wave photonic quasicrystal

    No full text
    In developing strategies for manipulating surface electromagnetic waves, it has been recently recognized that a complete forbidden bandgap can exist in a periodic surface-wave photonic crystal, which has subsequently produced various surface-wave photonic devices. However, it is not obvious whether such a concept can be extended to a quasi-periodic surface-wave system that lacks translational symmetry. Here, we experimentally demonstrate that a surface-wave photonic quasicrystal that lacks short-range order can also exhibit a forbidden bandgap for surface electromagnetic waves. The lower cutoff of this forbidden bandgap is mainly determined by the maximum separation between the nearest neighboring pillars. Point defects within this bandgap show distinct properties compared to a periodic photonic crystal in the absence of translational symmetry. A line-defect waveguide, which is crafted out of this surface-wave photonic quasicrystal by shortening a random row of metallic rods, is also demonstrated to guide and bend surface waves around sharp corners along an irregular waveguiding path.Published versionThis work was sponsored by the National Natural Science Foundation of China (No. 11965009) and the Natural Science Foundation of Guangxi (Nos. 2018JJA170010 and 2018GXNSFAA281193)

    Numerical Investigation of Graphene and STO Based Tunable Terahertz Absorber with Switchable Bifunctionality of Broadband and Narrowband Absorption

    No full text
    A graphene metamaterial and strontium titanate (STO)-based terahertz absorber with tunable and switchable bifunctionality has been numerically investigated in this work. Through electrically tuning the Fermi energy level of the cross-shaped graphene, the bandwidth of the proposed absorber varies continuously from 0.12 THz to 0.38 THz with the absorptance exceeding 90%, which indicates the functionality of broadband absorption. When the Fermi energy level of the cross-shaped graphene is 0 eV, the proposed absorber exhibits the other functionality of narrowband absorption owing to the thermal control of the relative permittivity of STO, and the rate of change of the center frequency is 50% ranging from 0.56 THz to 0.84 THz. The peak intensity of the narrowband absorption approximates to nearly 100% through adjusting the Fermi energy level of the graphene strips. The calculated results indicate that it is not sensitive to the polarization for wide incidence angles. The proposed absorber can realize tunable bifunctionality of broadband absorption with a tunable bandwidth and narrowband absorption with a tunable center frequency, which provides an alternative design opinion of the tunable terahertz devices with high performance for high-density integrated systems

    High-Quality Graphene-Based Tunable Absorber Based on Double-Side Coupled-Cavity Effect

    No full text
    Graphene-based devices have important applications attributed to their superior performance and flexible tunability in practice. In this paper, a new kind of absorber with monolayer graphene sandwiched between two layers of dielectric rings is proposed. Two peaks with almost complete absorption are realized. The mechanism is that the double-layer dielectric rings added to both sides of the graphene layer are equivalent to resonators, whose double-side coupled-cavity effect can make the incident electromagnetic wave highly localized in the upper and lower surfaces of graphene layer simultaneously, leading to significant enhancement in the absorption of graphene. Furthermore, the influence of geometrical parameters on absorption performance is investigated in detail. Also, the device can be actively manipulated after fabrication through varying the chemical potential of graphene. As a result, the frequency shifts of the two absorption peaks can reach as large as 2.82 THz/eV and 3.83 THz/eV, respectively. Such a device could be used as tunable absorbers and other functional devices, such as multichannel filters, chemical/biochemical modulators and sensors

    High-Quality Graphene-Based Tunable Absorber Based on Double-Side Coupled-Cavity Effect

    No full text
    Graphene-based devices have important applications attributed to their superior performance and flexible tunability in practice. In this paper, a new kind of absorber with monolayer graphene sandwiched between two layers of dielectric rings is proposed. Two peaks with almost complete absorption are realized. The mechanism is that the double-layer dielectric rings added to both sides of the graphene layer are equivalent to resonators, whose double-side coupled-cavity effect can make the incident electromagnetic wave highly localized in the upper and lower surfaces of graphene layer simultaneously, leading to significant enhancement in the absorption of graphene. Furthermore, the influence of geometrical parameters on absorption performance is investigated in detail. Also, the device can be actively manipulated after fabrication through varying the chemical potential of graphene. As a result, the frequency shifts of the two absorption peaks can reach as large as 2.82 THz/eV and 3.83 THz/eV, respectively. Such a device could be used as tunable absorbers and other functional devices, such as multichannel filters, chemical/biochemical modulators and sensors

    Enhancement of Self-Collimation Effect in Photonic Crystal Membranes Using Hyperbolic Metamaterials

    No full text
    Hyperbolic metamaterials (HMMs) exhibit high tunability in photonic devices. This study numerically investigates light propagation in photonic crystal (PhC) membranes containing HMMs. The proposed HMM PhC membranes contain square HMM rods, which comprise dielectric (Si) and metallic (Ag) layers. Owing to their property of subwavelength field localization, HMMs can be applied to PhCs to improve tunability and thus enhance the self-collimation (SC) effect of PhCs. The SC points were obtained in the second HMM PhC band, wherein the nearby dispersion curves change significantly. In addition, the effect of the HMM filling factor (i.e., the ratio of the metal-layer to unit-cell thicknesses) on the SC point frequency is studied. Finally, we demonstrate the efficient control of beam behaviors using HMM PhC membranes while considering the nonlinearity of Ag. The findings of this study confirm that high-performance HMM PhC membranes can be employed in nonlinear all-optical switches, filters, tunable lenses, and other integrated optical devices

    Densely Distributed Multiple Resonance Modes in a Fan-Shaped Plasmonic Nanostructure Demonstrated by FEM Simulations

    No full text
    Multiple resonance modes have important applications since they can provide multi-frequency operation for devices and bring great flexibility in practice. In this paper, based on a fan-shaped cavity coupled to a metal-isolator-metal (MIM) waveguide, a new kind of ultracompact plasmonic nanostructure is proposed to realize multiple resonance modes with dense distribution in a broad spectral range, and demonstrated through finite-element method (FEM) simulations. As many as ten resonance modes with an average interval of about 30 nm are obtained. They originate from the coexistence and interference of three types of basic modes in the fan-shaped cavity, i.e., the ring-waveguide modes, the modes in a ring array of periodic air grooves, and the metal-core-cavity modes. The dependence of resonance modes on structure parameters is investigated, which can provide an effective guide for choosing appropriate multiple-resonance-mode structures. Furthermore, by means of adjusting the geometrical asymmetry induced by the axial offset of the metal core in the fan-shaped cavity, the resonance modes can be effectively modulated, and some new modes appear because the wave path in the cavity is changed. The result proposes a novel way to create multiple resonance modes in plasmonic nanostructures, providing additional degrees of freedom for tailoring the resonance spectra and promising applications in various plasmonic devices, such as optical filters, ultrafast switches, biochemical sensors, and data storages

    Independently Tunable Fano Resonances Based on the Coupled Hetero-Cavities in a Plasmonic MIM System

    No full text
    In this paper, based on coupled hetero-cavities, multiple Fano resonances are produced and tuned in a plasmonic metal-insulator-metal (MIM) system. The structure comprises a rectangular cavity, a side-coupled waveguide, and an upper-coupled circular cavity with a metal-strip core, used to modulate Fano resonances. Three Fano resonances can be realized, which originate from interference of the cavity modes between the rectangular cavity and the metal-strip-core circular cavity. Due to the different cavity-cavity coupling mechanisms, the three Fano resonances can be divided into two groups, and each group of Fano resonances can be well tuned independently by changing the different cavity parameters, which can allow great flexibility to control multiple Fano resonances in practice. Furthermore, through carefully adjusting the direction angle of the metal-strip core in the circular cavity, the position and lineshape of the Fano resonances can be easily tuned. Notably, reversal asymmetry takes place for one of the Fano resonances. The influence of the direction angle on the figure of merit (FOM) value is also investigated. A maximum FOM of 3436 is obtained. The proposed structure has high transmission, sharp Fano lineshape, and high sensitivity to change in the background refractive index. This research provides effective guidance to tune multiple Fano resonances, which has important applications in nanosensors, filters, modulators, and other related plasmonic devices

    Twisted Bands with Degenerate Points of Photonic Hypercrystals in Infrared Region

    No full text
    Photonic hypercrystals (PHCs) are materials combining hyperbolic metamaterials (HMMs) with widely used photonic crystals. We found that finite-sized Type-I HMMs can support unique electromagnetic modes, which could be utilized in two-dimensional photonic crystals to achieve PHCs with twisted bands in the infrared region. Numerical investigation of the PHCs showed that the twisted bands have degenerate points that can support all-angle self-collimation effects. The behaviors of light beams change dramatically in such bands, which provides an effective method in controlling light propagation and can be applied as switching. The effect of the filling factor and the permittivity of the dielectric medium of the HMM on the twisted bands were studied. Furthermore, by considering the nonlinear effect of the dielectric layers, an all-optical switch working on the PHC twisted bands is proposed, which has low switching power and high extinction ratio (19.75 dB), superior to conventional HMM switches that require type transformation of metamaterial
    corecore