8,715 research outputs found

    5G Mobile Communications

    Get PDF
    This book provides a comprehensive overview of the emerging technologies for next-generation 5G mobile communications, with insights into the long-term future of 5G. Written by international leading experts on the subject, this contributed volume covers a wide range of technologies, research results, and networking methods. Key enabling technologies for 5G systems include, but are not limited to, millimeter-wave communications, massive MIMO technology and non-orthogonal multiple access. 5G will herald an even greater rise in the prominence of mobile access based upon both human-centric and machine-centric networks. Compared with existing 4G communications systems, unprecedented numbers of smart and heterogeneous wireless devices will be accessing future 5G mobile systems. As a result, a new paradigm shift is required to deal with challenges on explosively growing requirements in mobile data traffic volume (1000x), number of connected devices (10–100x), typical end-user data rate (10–100x), and device/network lifetime (10x). Achieving these ambitious goals calls for revolutionary candidate technologies in future 5G mobile systems. Designed for researchers and professionals involved with networks and communication systems, 5G Mobile Communications is a straightforward, easy-to-read analysis of the possibilities of 5G systems

    Quantum computing through electron propagation in the edge states of quantum spin Hall systems

    Full text link
    We propose to implement quantum computing based on electronic spin qubits by controlling the propagation of the electron wave packets through the helical edge states of quantum spin Hall systems (QSHs). Specfically, two non-commutative single-qubit gates, which rotate a qubit around z and y axes, can be realized by utilizing gate voltages either on a single QSH edge channel or on a quantum point contact structure. The more challenging two-qubit controlled phase gate can be implemented through the on-demand capacitive Coulomb interaction between two adjacent edge channels from two parallel QSHs. As a result, a universal set of quantum gates can be achieved in an all-electrical way. The fidelity and purity of the two-qubit gate are calculated with both time delay and finite width of the wave packets taken into consideration, which can reach high values with the existing high-quality single electron source

    Detecting Majorana fermions by use of superconductor-quantum Hall liquid junctions

    Full text link
    The point contact tunnel junctions between a one-dimensional topological superconductor and single-channel quantum Hall (QH) liquids are investigated theoretically with bosonization technology and renormalization group methods. For the ν=1\nu=1 integer QH liquid, the universal low-energy tunneling transport is governed by the perfect Andreev reflection fixed point with quantized zero-bias conductance G(0)=2e2/hG(0)=2e^{2}/h, which can serve as a definitive fingerprint of the existence of a Majorana fermion. For the ν=1/m\nu =1/m Laughlin fractional QH liquids, its transport is governed by the perfect normal reflection fixed point with vanishing zero-bias conductance and bias-dependent conductance G(V)∼Vm−2G(V) \sim V^{m-2}. Our setup is within reach of present experimental techniques.Comment: 6 pages, 1 figure, Added references,Corrected typo
    • …
    corecore