3,668 research outputs found

    Investment-specific technological change, skill accumulation, and wage inequality

    Get PDF
    Wage inequality between education groups in the United States has increased substantially since the early 1980s. The relative number of college-educated workers has also increased dramatically in the postwar period. This paper presents a unified framework where the dynamics of both skill accumulation and wage inequality arise as an equilibrium outcome driven by measured investment-specific technological change. Working through equipment-skill complementarity and endogenous skill accumulation, the model does well in capturing the steady growth in the relative quantity of skilled labor during the postwar period and the substantial rise in wage inequality after the early 1980s. Based on the calibrated model, we examine the quantitative effects of some hypothetical tax-policy reforms on skill accumulation, wage inequality, and welfare.Wages

    Requirement for the induced expression of a cell wall associated receptor kinase for survival during the pathogen response

    Get PDF
    Pathogen infection of angiosperms must rely on some interaction between the extracellular matrix (ECM) and the invading agent, and may be accompanied by signaling between the ECM and cytoplasm. An Arabidopsis cell wall associated receptor kinase (Wak1) has an amino-terminal domain that is tightly associated with the ECM, spans the plasma membrane and has a cytoplasmic protein kinase domain. Wak1 expression is induced when Arabidopsis plants are infected with pathogen, or when the pathogen response is stimulated either by exogenous salicylate (SA) or its analog 2,2-dichloroisonicotinic acid (INA). This Wak1 induction requires the positive regulator NPR1/NIM1. Thus Wak1 is a pathogen-related (PR) protein. Expression of an antisense and a dominant negative allele of Wak1 shows that induced expression of Wak1 is needed for a plant to survive if stimulated by INA. Ectopic expression of the entire Wak1, or the kinase domain alone, can provide resistance to otherwise lethal SA levels. These experiments suggest that Wak1 expression and other PR proteins are protecting plants from detrimental effects incurred during the pathogen response. These results provide a direct link between a protein kinase that could mediate signals from the ECM, to the events that are precipitated by a pathogen infection

    Characterization of a Novel ArsR-Like Regulator Encoded by Rv2034 in Mycobacterium tuberculosis

    Get PDF
    The genome of Mycobacterium tuberculosis, the causative agent of tuberculosis, encodes a large number of putative transcriptional regulators. However, the identity and target genes of only a few of them have been clearly identified to date. In a recent study, the ArsR family regulator Rv2034 was characterized as a novel positive regulator of phoP. In the current study, we characterized the auto-repressive capabilities of Rv2034 and identified several residues in the protein critical for its DNA binding activities. We also provide evidence that Rv2034 forms dimers in vitro. Furthermore, by using DNaseI footprinting assays, a palindromic sequence was identified as its binding site. Notably, we found that the dosR promoter region contains the binding motif for Rv2034, and that Rv2034 positively regulates the expression of the dosR gene. The potential roles of Rv2034 in the regulation of lipid metabolism and hypoxic adaptation are discussed

    A cell wall-associated, receptor-like protein kinase

    Get PDF
    Physical connections between higher plant cell walls and the plasma membrane have been identified visually, but the molecules involved in the contact are unknown. We describe here an Arabidopsis thaliana protein kinase, designated Wak1 for wall-associated kinase, whose predicted extracytoplasmic domain contains several epidermal growth factor repeats and identity with a viral movement protein. Wak1 fractionates with insoluble material when plant tissue is ground in a variety of buffers and detergents, suggesting a tight association with the plant extracellular matrix. Immunocytochemistry confirms that Wak1 is associated with the cell wall. Enzymatic digestion of the cell wall allows the release of Wak1 from the insoluble cell wall fraction, and protease experiments indicate that Wak1 likely has a cytoplasmic kinase domain, and the EGF containing domain is extracellular. Wak1 is found in all vegetative tissues of Arabidopsis, and has relatives in other angiosperms, but not Chlamydomonas. We suggest that Wak1 is a good candidate for a physical continuum between the cell wall and the cytoplasm, and since the kinase is cytoplasmic, it also has the potential to mediate signals to the cytoplasm from the cell wall

    Discrepancy of coordinate system selection in backscattering Mueller matrix polarimetry: exploring photon coordinate system transformation invariants

    Get PDF
    In biomedical studies, Mueller matrix polarimetry is gaining increasing attention because it can comprehensively characterize polarization-related vectorial properties of the sample, which are crucial for microstructural identification and evaluation. For backscattering Mueller matrix polarimetry, there are two photon coordinate selection conventions, which can affect the following Mueller matrix parameters calculation and information acquisition quantitatively. In this study, we systematically analyze the influence of photon coordinate system selection on the backscattering Mueller matrix polarimetry. We compare the Mueller matrix elements in the right-handed-nonunitary and non-right-handed-unitary coordinate systems, and specifically deduce the changes of Mueller matrix polar decomposition, Mueller matrix Cloude decomposition and Mueller matrix transformation parameters widely used in backscattering Mueller matrix imaging as the photon coordinate system varied. Based on the theoretical analysis and phantom experiments, we provide a group of photon coordinate system transformation invariants for backscattering Mueller matrix polarimetry. The findings presented in this study give a crucial criterion of parameters selection for backscattering Mueller matrix imaging under different photon coordinate systems

    Analyzing the influence of oblique incidence on quantitative backscattering tissue polarimetry: a pilot ex vivo study

    Get PDF
    Significance Among the available polarimetric techniques, backscattering Mueller matrix (MM) polarimetry provides a promising non-contact and quantitative tool for in vivo tissue detection and clinical diagnosis. To eliminate the surface reflection from the sample cost-effectively, the non-collinear backscattering MM imaging setup always has an oblique incidence. Meanwhile, for practical organ cavities imaged using polarimetric gastrointestinal endoscopy, the uneven tissue surfaces can induce various relative oblique incidences inevitably, which can affect the polarimetry in a complicated manner and needs to be considered for detailed study. Aim The purpose of this study is to systematically analyze the influence of oblique incidence on backscattering tissue polarimetry. Approach We measured the MMs of experimental phantom and ex vivo tissues with different incident angles and adopted a Monte Carlo simulation program based on cylindrical scattering model for further verification and analysis. Meanwhile, the results were quantitatively evaluated using the Fourier transform, basic statistics, and frequency distribution histograms. Results Oblique incidence can induce different changes on non-periodic, two-periodic, and four-periodic MM elements, leading to false-positive and false-negative polarization information for tissue polarimetry. Moreover, a prominent oblique incidence can bring more dramatic signal variations, such as phase retardance and element transposition. Conclusions The findings presented in this study give some crucial criterions of appropriate incident angle selections for in vivo polarimetric endoscopy and other applications and can also be valuable references for studying how to minimize the influence further

    Complex spatial illumination scheme optimization of backscattering mueller matrix polarimetry for tissue imaging and biosensing

    Get PDF
    Polarization imaging and sensing techniques have shown great potential for biomedical and clinical applications. As a novel optical biosensing technology, Mueller matrix polarimetry can provide abundant microstructural information of tissue samples. However, polarimetric aberrations, which lead to inaccurate characterization of polarization properties, can be induced by uneven biomedical sample surfaces while measuring Mueller matrices with complex spatial illuminations. In this study, we analyze the detailed features of complex spatial illumination-induced aberrations by measuring the backscattering Mueller matrices of experimental phantom and tissue samples. We obtain the aberrations under different spatial illumination schemes in Mueller matrix imaging. Furthermore, we give the corresponding suggestions for selecting appropriate illumination schemes to extract specific polarization properties, and then provide strategies to alleviate polarimetric aberrations by adjusting the incident and detection angles in Mueller matrix imaging. The optimized scheme gives critical criteria for the spatial illumination scheme selection of non-collinear backscattering Mueller matrix measurements, which can be helpful for the further development of quantitative tissue polarimetric imaging and biosensing

    Shadow Thermodynamics of AdS Black Hole with the Nonlinear Electrodynamics Term

    Full text link
    In this paper, we have creatively employed the shadow radius to study the thermodynamics of a charged AdS black hole with a nonlinear electrodynamics(NLED) term. First, the connection between the shadow radius and event horizon is constructed with the aid of the geodesic analysis. It turns out that the black hole shadow radius shows a positive correlation as a function of the event horizon radius. Then in the shadow context, we found that the black hole temperature and heat capacity can be presented by the shadow radius. And further analysis shows that the shadow radius can do as well as the event horizon in revealing black hole phase transition process. In this sense, we constructed the thermal profile of the charged AdS black hole with inclusion of the NLED effect. In P < Pc case, it is found that the N-type trend of the temperature given by the shadow radius is always coincide with that obtained by using the event horizon. So, we can concluded for the charged AdS black hole that the phase transition process can be intuitively presented as the thermal profile in the shadow context. Finally, the effects of NLED have been carefully analysed through out the paper.Comment: 17 pages, 21 figure
    • …
    corecore