6,031 research outputs found

    MMF3: Neural Code Summarization Based on Multi-Modal Fine-Grained Feature Fusion

    Full text link
    Background: Code summarization automatically generates the corresponding natural language descriptions according to the input code. Comprehensiveness of code representation is critical to code summarization task. However, most existing approaches typically use coarse-grained fusion methods to integrate multi-modal features. They generally represent different modalities of a piece of code, such as an Abstract Syntax Tree (AST) and a token sequence, as two embeddings and then fuse the two ones at the AST/code levels. Such a coarse integration makes it difficult to learn the correlations between fine-grained code elements across modalities effectively. Aims: This study intends to improve the model's prediction performance for high-quality code summarization by accurately aligning and fully fusing semantic and syntactic structure information of source code at node/token levels. Method: This paper proposes a Multi-Modal Fine-grained Feature Fusion approach (MMF3) for neural code summarization. We introduce a novel fine-grained fusion method, which allows fine-grained fusion of multiple code modalities at the token and node levels. Specifically, we use this method to fuse information from both token and AST modalities and apply the fused features to code summarization. Results: We conduct experiments on one Java and one Python datasets, and evaluate generated summaries using four metrics. The results show that: 1) the performance of our model outperforms the current state-of-the-art models, and 2) the ablation experiments show that our proposed fine-grained fusion method can effectively improve the accuracy of generated summaries. Conclusion: MMF3 can mine the relationships between crossmodal elements and perform accurate fine-grained element-level alignment fusion accordingly. As a result, more clues can be provided to improve the accuracy of the generated code summaries.Comment: 12 pages, 5 figure

    DPFNet: A Dual-branch Dilated Network with Phase-aware Fourier Convolution for Low-light Image Enhancement

    Full text link
    Low-light image enhancement is a classical computer vision problem aiming to recover normal-exposure images from low-light images. However, convolutional neural networks commonly used in this field are good at sampling low-frequency local structural features in the spatial domain, which leads to unclear texture details of the reconstructed images. To alleviate this problem, we propose a novel module using the Fourier coefficients, which can recover high-quality texture details under the constraint of semantics in the frequency phase and supplement the spatial domain. In addition, we design a simple and efficient module for the image spatial domain using dilated convolutions with different receptive fields to alleviate the loss of detail caused by frequent downsampling. We integrate the above parts into an end-to-end dual branch network and design a novel loss committee and an adaptive fusion module to guide the network to flexibly combine spatial and frequency domain features to generate more pleasing visual effects. Finally, we evaluate the proposed network on public benchmarks. Extensive experimental results show that our method outperforms many existing state-of-the-art ones, showing outstanding performance and potential

    E-CLIP: Towards Label-efficient Event-based Open-world Understanding by CLIP

    Full text link
    Contrasting Language-image pertaining (CLIP) has recently shown promising open-world and few-shot performance on 2D image-based recognition tasks. However, the transferred capability of CLIP to the novel event camera data still remains under-explored. In particular, due to the modality gap with the image-text data and the lack of large-scale datasets, achieving this goal is non-trivial and thus requires significant research innovation. In this paper, we propose E-CLIP, a novel and effective framework that unleashes the potential of CLIP for event-based recognition to compensate for the lack of large-scale event-based datasets. Our work addresses two crucial challenges: 1) how to generalize CLIP's visual encoder to event data while fully leveraging events' unique properties, e.g., sparsity and high temporal resolution; 2) how to effectively align the multi-modal embeddings, i.e., image, text, and events. To this end, we first introduce a novel event encoder that subtly models the temporal information from events and meanwhile generates event prompts to promote the modality bridging. We then design a text encoder that generates content prompts and utilizes hybrid text prompts to enhance the E-CLIP's generalization ability across diverse datasets. With the proposed event encoder, text encoder, and original image encoder, a novel Hierarchical Triple Contrastive Alignment (HTCA) module is introduced to jointly optimize the correlation and enable efficient knowledge transfer among the three modalities. We conduct extensive experiments on two recognition benchmarks, and the results demonstrate that our E-CLIP outperforms existing methods by a large margin of +3.94% and +4.62% on the N-Caltech dataset, respectively, in both fine-tuning and few-shot settings. Moreover, our E-CLIP can be flexibly extended to the event retrieval task using both text or image queries, showing plausible performance.Comment: Jounal version with supplementary materia

    A PML method for signal-propagation problems in axon

    Full text link
    This work is focused on the modelling of signal propagations in myelinated axons to characterize the functions of the myelin sheath in the neural structure. Based on reasonable assumptions on the medium properties, we derive a two-dimensional neural-signaling model in cylindrical coordinates from the time-harmonic Maxwell's equations. The well-posedness of model is established upon Dirichlet boundary conditions at the two ends of the neural structure and the radiative condition in the radial direction of the structure. Using the perfectly matched layer (PML) method, we truncate the unbounded background medium and propose an approximate problem on the truncated domain. The well-posedness of the PML problem and the exponential convergence of the approximate solution to the exact solution are established. Numerical experiments based on finite element discretization are presented to demonstrate the theoretical results and the efficiency of our methods to simulate the signal propagation in axons
    • …
    corecore