2,774 research outputs found

    Analyses of pion-nucleon elastic scattering amplitudes up to O(p4)O(p^4) in extended-on-mass-shell subtraction scheme

    Full text link
    We extend the analysis of elastic pion-nucleon scattering up to O(p4)O(p^4) level using extended-on-mass-shell subtraction scheme within the framework of covariant baryon chiral perturbation theory. Numerical fits to partial wave phase shift data up to s=1.13\sqrt{s}=1.13 GeV are performed to pin down the free low energy constants. A good description to the existing phase shift data is achieved. We find a good convergence for the chiral series at O(p4)O(p^4), considerably improved with respect to the O(p3)O(p^3)-level analyses found in previous literature. Also, the leading order contribution from explicit Δ(1232)\Delta(1232) resonance and partially-included Δ(1232)\Delta(1232) loop contribution are included to describe phase shift data up to s=1.20\sqrt{s}=1.20 GeV. As phenomenological applications, we investigate chiral correction to the Goldberger-Treiman relation %ΔGT\Delta_{GT} and find that it converges rapidly, and the O(p3)O(p^3) correction is found to be very small: 0.2\simeq 0.2%. We also get a reasonable prediction of pion-nucleon sigma term σπN\sigma_{\pi N} up to O(p4)O(p^4) by performing fits including both the pion-nucleon partial wave phase shift data and the lattice QCD data. We report that σπN=52±7\sigma_{\pi N}=52\pm7 MeV from the fit without Δ(1232)\Delta(1232), and σπN=45±6\sigma_{\pi N}=45\pm6 MeV from the fit with explicit Δ(1232)\Delta(1232).Comment: The final version published in Phys.Rev. D 87, 054019 (2013

    Measuring the X-ray luminosities of DESI groups from eROSITA Final Equatorial-Depth Survey: I. X-ray luminosity - halo mass scaling relation

    Full text link
    We use the eROSITA Final Equatorial-Depth Survey (eFEDS) to measure the rest-frame 0.1-2.4 keV band X-ray luminosities of \sim 600,000 DESI groups using two different algorithms in the overlap region of the two observations. These groups span a large redshift range of 0.0zg1.00.0 \le z_g \le 1.0 and group mass range of 1010.76h1MMh1015.0h1M10^{10.76}h^{-1}M_{\odot} \le M_h \le 10^{15.0}h^{-1}M_{\odot}. (1) Using the blind detection pipeline of eFEDS, we find that 10932 X-ray emission peaks can be cross matched with our groups, 38%\sim 38 \% of which have signal-to-noise ratio S/N3\rm{S}/\rm{N} \geq 3 in X-ray detection. Comparing to the numbers reported in previous studies, this matched sample size is a factor of 6\sim 6 larger. (2) By stacking X-ray maps around groups with similar masses and redshifts, we measure the average X-ray luminosity of groups as a function of halo mass in five redshift bins. We find, in a wide halo mass range, the X-ray luminosity, LXL_{\rm X}, is roughly linearly proportional to MhM_{h}, and is quite independent to the redshift of the groups. (3) We use a Poisson distribution to model the X-ray luminosities obtained using two different algorithms and obtain best-fit LX=1028.46±0.03Mh1.024±0.002L_{\rm X}=10^{28.46\pm0.03}M_{h}^{1.024\pm0.002} and LX=1026.73±0.04Mh1.140±0.003L_{\rm X}=10^{26.73 \pm 0.04}M_{h}^{1.140 \pm 0.003} scaling relations, respectively. The best-fit slopes are flatter than the results previously obtained, but closer to a self-similar prediction.Comment: 15 pages, 13 figures, accepted for publication in MNRA

    Clinical application of the paraspinal erector approach for spinal canal decompression in upper lumber burst fractures

    Get PDF
    OBJECTIVE: Percutaneous pedicle screw fixation is commonly used for upper lumber burst fractures. The direct decompression remains challenging with this minimally invasive surgery. The objective was to evaluate a novel paraspinal erector approach for effective and direct decompression in patients with canal compromise and neurologic deficit. METHOD: Patients (n = 21) with neurological deficiency and Denis B type upper lumbar burst fracture were enrolled in the study, including 14 cases in the L1 and 7 cases in the L2. The patients underwent removal of bone fragments from the spinal canal through intervertebral foramen followed by short-segment fixation. Evaluations included surgery-related, such as duration of surgery and blood loss, and 12-month follow-up, such as the kyphotic angle, the height ratio of the anterior edge of the vertebra, the ratio of sagittal canal compromise, visual analog scale (VAS), Oswestry Disability Index (ODI), and Frankel scores. RESULTS: All patients achieved direct spinal canal decompression using the paraspinal erector approach followed by percutaneous pedicle screw fixation. The mean operation time (SD) was 173 (23) min, and the mean (SD) blood loss was 301 (104) ml. Significant improvement was noted in the kyphotic angle, 26.2 ± 8.7 prior to operation versus 9.1 ± 4.7 at 12 months after operation (p <0.05); the height ratio of the anterior edge of the injured vertebra, 60 ± 16% versus 84 ± 9% (p <0.05); and the ratio of sagittal canal compromise, 46.5 ± 11.4% versus 4.3 ± 3.6% (p <0.05). Significant improvements in VAS (7.3 ± 1.2 vs. 1.9 ± 0.7, p <0.05), ODI (86.7 ± 5.8 vs. 16.7 ± 5.1, p <0.05), and Frankel scores were also noted. CONCLUSIONS: The paraspinal erector approach was effective for direct spinal canal decompression with minimal injury in the paraspinal muscles or spine. Significant improvements in spinal function and prognostics were achieved after the percutaneous pedicle screw fixation

    Investigating high energy proton proton collisions with a multi-phase transport model approach based on PYTHIA8 initial conditions

    Get PDF
    The striking resemblance of high multiplicity proton-proton (pp) collisions at the LHC to heavy ion collisions challenges our conventional wisdom on the formation of the Quark-Gluon Plasma (QGP). A consistent explanation of the collectivity phenomena in pp will help us to understand the mechanism that leads to the QGP-like signals in small systems. In this study, we introduce a transport model approach connecting the initial conditions provided by PYTHIA8 with subsequent AMPT rescatterings to study the collective behavior in high energy pp collisions. The multiplicity dependence of light hadron productions from this model is in reasonable agreement with the pp s=13\sqrt{s}=13 TeV experimental data. It is found in the comparisons that both the partonic and hadronic final state interactions are important for the generation of the radial flow feature of the pp transverse momentum spectra. The study also shows that the long range two particle azimuthal correlation in high multiplicity pp events is sensitive to the proton sub-nucleon spatial fluctuations

    Retrospective analysis for thirty-nine patients with solitary fibrous tumor of pleura and review of the literature

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Solitary fibrous tumor of the pleura (SFTP) is an uncommon neoplasm arising from mesenchymal cells. The aim of this study is to summarize the experience and the outcome of the surgical treatment for 39 cases of SFTP.</p> <p>Methods</p> <p>From January 2004 to December 2008, 39 patients underwent surgical resection of SFTP in our department. All patients had clinical follow-up by the same team of surgeons. The mean follow-up was 40.3 months.</p> <p>Results</p> <p>A local removal of the neoplasm was accomplished by video-assisted thoracic surgery (VATS) in 9 patients (group A) and by thoracotomy in 30 patients (group B) respectively. Comparing with group B, operations in group A took significantly less operative time, blood loss and spent less time in the intensive care unit and hospital. All specimens were positive for CD34 and Bcl-2. One patient developed recurrence, and the remaining 38 patients are alive and disease free at the end of follow-up.</p> <p>Conclusions</p> <p>Malignant SFTP still had the potential recurrence. VATS represents the more acceptable choice for the selected patients with SFTP.</p

    Bis(2,9-dimethyl-1,10-phenanthroline-κ2 N,N′)(10,11,12,13-tetra­hydro­dipyrido[3,2-a:2′,3′-c]phenazine-κ2 N 4,N 5)ruthenium(II) bis­(perchlorate) dihydrate

    Get PDF
    The title compound, [Ru(C14H12N2)2(C18H14N4)](ClO4)2·2H2O, consists of an RuII complex cation, two perchlorate anions and two uncoordinated water mol­ecules. The RuII ion is chelated by a 10,11,12,13-tetra­hydro­dipyrido[3,2-a:2′,3′-c]phenazine ligand and two 2,9-dimethyl-1,10-phenanthroline ligands in a distorted octa­hedral geometry. The two uncoord­inated water mol­ecules are disordered over five positions, with an occupancy factor of about 0.4 for each site. A supra­molecular structure is formed by weak π–π inter­actions between neighbouring mol­ecules, with centroid–centroid distances of 3.618 (2) and 3.749 (2) Å

    Stark tuning of telecom single-photon emitters based on a single Er3+^{3+}

    Full text link
    The implementation of scalable quantum networks requires photons at the telecom band and long-lived spin coherence. The single Er3+^{3+} in solid-state hosts is an important candidate that fulfills these critical requirements simultaneously. However, to entangle distant Er3+^{3+} ions through photonic connections, the emission frequency of individual Er3+^{3+} in solid-state matrix must be the same, which is challenging because the emission frequency of Er3+^{3+} depends on its local environment. In this study, we propose and experimentally demonstrate the Stark tuning of the emission frequency of a single Er3+^{3+} in a Y2_2SiO5_5 crystal by employing electrodes interfaced with a silicon photonic crystal cavity. We obtain a Stark shift of 182.9 ±\pm 0.8 MHz which is approximately 27 times of the optical emission linewidth, demonstrating the promising applications in tuning the emission frequency of independent Er3+^{3+} into the same spectral channels. Our results provide a useful solution for the construction of scalable quantum networks based on single Er3+^{3+} and a universal tool for tuning the emission of individual rare-earth ions
    corecore