426 research outputs found
Comment on ``Coherent Control of a V-Type Three-Level System in a Single Quantum Dot''
This is a Comment on Phys. Rev. Lett., {\bf 95}, 187404 (2005)Comment: 1 page
Single molecule photon counting statistics for quantum mechanical chromophore dynamics
We extend the generating function technique for calculation of single
molecule photon emission statistics [Y. Zheng and F. L. H. Brown, Phys. Rev.
Lett., 90,238305 (2003)] to systems governed by multi-level quantum dynamics.
This opens up the possibility to study phenomena that are outside the realm of
purely stochastic and mixed quantum-stochastic models. In particular, the
present methodology allows for calculation of photon statistics that are
spectrally resolved and subject to quantum coherence. Several model
calculations illustrate the generality of the technique and highlight
quantitative and qualitative differences between quantum mechanical models and
related stochastic approximations. Calculations suggest that studying photon
statistics as a function of photon frequency has the potential to reveal more
about system dynamics than the usual broadband detection schemes.Comment: Submitted to the Journal of Physical Chemistr
Modeling of Biological Intelligence for SCM System Optimization
This article summarizes some methods from biological intelligence for modeling and optimization of supply chain management (SCM) systems, including genetic algorithms, evolutionary programming, differential evolution, swarm intelligence, artificial immune, and other biological intelligence related methods. An SCM system is adaptive, dynamic, open self-organizing, which is maintained by flows of information, materials, goods, funds, and energy. Traditional methods for modeling and optimizing complex SCM systems require huge amounts of computing resources, and biological intelligence-based solutions can often provide valuable alternatives for efficiently solving problems. The paper summarizes the recent related methods for the design and optimization of SCM systems, which covers the most widely used genetic algorithms and other evolutionary algorithms
Genomic epidemiology of Vibrio cholerae reveals the regional and global spread of two epidemic non-toxigenic lineages
Non-toxigenic Vibrio cholerae isolates have been found associated with diarrheal disease globally, however, the global picture of non-toxigenic infections is largely unknown. Among non-toxigenic V. cholerae, ctxAB negative, tcpA positive (CNTP) isolates have the highest risk of disease. From 2001 to 2012, 71 infectious diarrhea cases were reported in Hangzhou, China, caused by CNTP serogroup O1 isolates. We sequenced 119 V. cholerae genomes isolated from patients, carriers and the environment in Hangzhou between 2001 and 2012, and compared them with 850 publicly available global isolates. We found that CNTP isolates from Hangzhou belonged to two distinctive lineages, named L3b and L9. Both lineages caused disease over a long time period with usually mild or moderate clinical symptoms. Within Hangzhou, the spread route of the L3b lineage was apparently from rural to urban areas, with aquatic food products being the most likely medium. Both lineages had been previously reported as causing local endemic disease in Latin America, but here we show that global spread of them has occurred, with the most likely origin of L3b lineage being in Central Asia. The L3b lineage has spread to China on at least three occasions. Other spread events, including from China to Thailand and to Latin America were also observed. We fill the missing links in the global spread of the two non-toxigenic serogroup O1 V. cholerae lineages that can cause human infection. The results are important for the design of future disease control strategies: surveillance of V. cholerae should not be limited to ctxAB positive strains
- …