44 research outputs found

    A simple PDMS-based microfluidic channel design that removes bubbles for long-term on-chip culture of mammalian cells

    Get PDF
    This report shows methods to fabricate polydimethylsiloxane (PDMS) microfluidic systems for longterm (up to 10 day) cell culture. Undesired bubble accumulation in microfluidic channels abruptly changes the microenvironment of adherent cells and leads to the damage and death of cells. Existing bubble trapping approaches have drawbacks such as the need to pause fluid flow, requirement for external vacuum or pressure source, and possible cytotoxicity. This study reports two kinds of integrated bubble trap (IBT) which have excellent properties, including simplicity in structure, ease in fabrication, no interference with the flow, and long-term stability. IBT-A provides the simplest solution to prevent bubbles from entering microfluidic channels. In situ time-lapse imaging experiments indicate that IBT-B is an excellent device both for bubble trapping and debubbling in cell-loaded microfluidics. MC 3T3 E1 cells, cultured in a long and curved microfluidic channel equipped with IBT-B, showed high viability and active proliferation after 10 days of continuous fluid flow. The comprehensive measures taken in our experiments have led to successful long-term, bubble-free, on-chip culture of cells

    Sugar Protectants Improve the Thermotolerance and Biocontrol Efficacy of the Biocontrol Yeast, Candida oleophila

    Get PDF
    A variety of sugar compounds have been used as additives to protect various biocontrol yeasts from adverse environmental stresses. However, studies on maltose and lactose as sugar protectants are limited, and their protective effect is not clear. In the present study, exposure of the biocontrol yeast Candida oleophila cells to 45°C for 10 min, while immersed in either 5 or 10% (w/v) maltose or lactose, provided a significant protective effect. The addition of maltose and lactose significantly enhanced enzyme activity and gene expression of catalase, thioredoxin reductase, and glutathione reductase, relative to cells that have been immersed in sterile distilled water (controls) exposed to 45°C. In addition, C. oleophila cells suspended in maltose and lactose solutions also exhibited higher viability and ATP levels, relative to control cells. Notably, the biocontrol efficacy of C. oleophila against postharvest diseases of apple fruit was maintained after the yeast was exposed to the high temperature treatment while immersed in maltose and lactose solutions. These results demonstrate the potential of maltose and lactose as sugar protectants for biocontrol agent against heat stress

    Synthesizing Living Tissues with Microfluidics

    No full text

    In Vitro Evaluation of Essential Mechanical Properties and Cell Behaviors of a Novel Polylactic-co-Glycolic Acid (PLGA)-Based Tubular Scaffold for Small-Diameter Vascular Tissue Engineering

    No full text
    In this paper, we investigate essential mechanical properties and cell behaviors of the scaffolds fabricated by rolling polylactic-co-glycolic acid (PLGA) electrospinning (ES) films for small-diameter vascular grafts (inner diameter < 6 mm). The newly developed strategy can be used to fabricate small diameter vascular grafts with or without pre-seeded cells, which are two main branches for small diameter vascular engineering. We demonstrate that the mechanical properties of our rolling-based scaffolds can be tuned flexibly by the number of layers. For cell-free scaffolds, with the increase of layer number, burst pressure and suture retention increase, elastic tensile modulus maintains unchanged statistically, but compliance and liquid leakage decrease. For cell-containing scaffolds, seeding cells will significantly decrease the liquid leakage, but there are no statistical differences for other mechanical properties; moreover, cells live and proliferate well in the scaffold after a 6-day culture

    PrP106-126 amide causes the semi-penetrated poration in the supported lipid bilayers

    Get PDF
    A major hallmark of prion diseases is the cerebral amyloid accumulation of the pathogenic PrPSc, an abnormally misfolded, protease-resistant, and beta-sheet rich protein. PrP106-126 is the key domain responsible for the conformational conversion and aggregation of PrP. It shares important physicochemical characteristics with PrPSc and presents similar neurotoxicity as PrPSc. By combination of fluorescence polarization, dye release assay and in situ time-lapse atomic force microscopy (AFM), we investigated the PrP106-126 amide interacting with the large unilamellar vesicles (LUVs) and the supported lipid bilayers (SLBs). The results suggest that the interactions involve a poration-mediated process: firstly, the peptide binding results in the formation of pores in the membranes, which penetrate only half of the membranes; subsequently, PrP106-126 amide undergoes the poration-mediated diffusion in the SLBs, represented by the formation and expansion of the flat high-rise domains (FHDs). The possible mechanisms of the interactions between PrP106-126 amide and lipid membranes are proposed based on our observations. (c) 2007 Elsevier B.V. All rights reserved.Biochemistry & Molecular BiologyBiophysicsSCI(E)061420-1429176
    corecore