5,195 research outputs found

    Transfer Learning for Speech and Language Processing

    Full text link
    Transfer learning is a vital technique that generalizes models trained for one setting or task to other settings or tasks. For example in speech recognition, an acoustic model trained for one language can be used to recognize speech in another language, with little or no re-training data. Transfer learning is closely related to multi-task learning (cross-lingual vs. multilingual), and is traditionally studied in the name of `model adaptation'. Recent advance in deep learning shows that transfer learning becomes much easier and more effective with high-level abstract features learned by deep models, and the `transfer' can be conducted not only between data distributions and data types, but also between model structures (e.g., shallow nets and deep nets) or even model types (e.g., Bayesian models and neural models). This review paper summarizes some recent prominent research towards this direction, particularly for speech and language processing. We also report some results from our group and highlight the potential of this very interesting research field.Comment: 13 pages, APSIPA 201

    Distant Supervision for Entity Linking

    Full text link
    Entity linking is an indispensable operation of populating knowledge repositories for information extraction. It studies on aligning a textual entity mention to its corresponding disambiguated entry in a knowledge repository. In this paper, we propose a new paradigm named distantly supervised entity linking (DSEL), in the sense that the disambiguated entities that belong to a huge knowledge repository (Freebase) are automatically aligned to the corresponding descriptive webpages (Wiki pages). In this way, a large scale of weakly labeled data can be generated without manual annotation and fed to a classifier for linking more newly discovered entities. Compared with traditional paradigms based on solo knowledge base, DSEL benefits more via jointly leveraging the respective advantages of Freebase and Wikipedia. Specifically, the proposed paradigm facilitates bridging the disambiguated labels (Freebase) of entities and their textual descriptions (Wikipedia) for Web-scale entities. Experiments conducted on a dataset of 140,000 items and 60,000 features achieve a baseline F1-measure of 0.517. Furthermore, we analyze the feature performance and improve the F1-measure to 0.545

    Max-margin Metric Learning for Speaker Recognition

    Full text link
    Probabilistic linear discriminant analysis (PLDA) is a popular normalization approach for the i-vector model, and has delivered state-of-the-art performance in speaker recognition. A potential problem of the PLDA model, however, is that it essentially assumes Gaussian distributions over speaker vectors, which is not always true in practice. Additionally, the objective function is not directly related to the goal of the task, e.g., discriminating true speakers and imposters. In this paper, we propose a max-margin metric learning approach to solve the problems. It learns a linear transform with a criterion that the margin between target and imposter trials are maximized. Experiments conducted on the SRE08 core test show that compared to PLDA, the new approach can obtain comparable or even better performance, though the scoring is simply a cosine computation

    Full-info Training for Deep Speaker Feature Learning

    Full text link
    In recent studies, it has shown that speaker patterns can be learned from very short speech segments (e.g., 0.3 seconds) by a carefully designed convolutional & time-delay deep neural network (CT-DNN) model. By enforcing the model to discriminate the speakers in the training data, frame-level speaker features can be derived from the last hidden layer. In spite of its good performance, a potential problem of the present model is that it involves a parametric classifier, i.e., the last affine layer, which may consume some discriminative knowledge, thus leading to `information leak' for the feature learning. This paper presents a full-info training approach that discards the parametric classifier and enforces all the discriminative knowledge learned by the feature net. Our experiments on the Fisher database demonstrate that this new training scheme can produce more coherent features, leading to consistent and notable performance improvement on the speaker verification task.Comment: Accepted by ICASSP 201

    Large Margin Nearest Neighbor Embedding for Knowledge Representation

    Full text link
    Traditional way of storing facts in triplets ({\it head\_entity, relation, tail\_entity}), abbreviated as ({\it h, r, t}), makes the knowledge intuitively displayed and easily acquired by mankind, but hardly computed or even reasoned by AI machines. Inspired by the success in applying {\it Distributed Representations} to AI-related fields, recent studies expect to represent each entity and relation with a unique low-dimensional embedding, which is different from the symbolic and atomic framework of displaying knowledge in triplets. In this way, the knowledge computing and reasoning can be essentially facilitated by means of a simple {\it vector calculation}, i.e. h+rβ‰ˆt{\bf h} + {\bf r} \approx {\bf t}. We thus contribute an effective model to learn better embeddings satisfying the formula by pulling the positive tail entities t+{\bf t^{+}} to get together and close to {\bf h} + {\bf r} ({\it Nearest Neighbor}), and simultaneously pushing the negatives tβˆ’{\bf t^{-}} away from the positives t+{\bf t^{+}} via keeping a {\it Large Margin}. We also design a corresponding learning algorithm to efficiently find the optimal solution based on {\it Stochastic Gradient Descent} in iterative fashion. Quantitative experiments illustrate that our approach can achieve the state-of-the-art performance, compared with several latest methods on some benchmark datasets for two classical applications, i.e. {\it Link prediction} and {\it Triplet classification}. Moreover, we analyze the parameter complexities among all the evaluated models, and analytical results indicate that our model needs fewer computational resources on outperforming the other methods.Comment: arXiv admin note: text overlap with arXiv:1503.0815

    A Study on Replay Attack and Anti-Spoofing for Automatic Speaker Verification

    Full text link
    For practical automatic speaker verification (ASV) systems, replay attack poses a true risk. By replaying a pre-recorded speech signal of the genuine speaker, ASV systems tend to be easily fooled. An effective replay detection method is therefore highly desirable. In this study, we investigate a major difficulty in replay detection: the over-fitting problem caused by variability factors in speech signal. An F-ratio probing tool is proposed and three variability factors are investigated using this tool: speaker identity, speech content and playback & recording device. The analysis shows that device is the most influential factor that contributes the highest over-fitting risk. A frequency warping approach is studied to alleviate the over-fitting problem, as verified on the ASV-spoof 2017 database
    • …
    corecore