2,061 research outputs found

    Effect of dose and types of the water reducing admixtures and superplasticizers on concrete strength and durability behaviour:A review

    Get PDF
    As one of the concrete admixtures, water reducing admixtures and superplasticizers are usually used to re-duce the mixing water volume and improve the performance of the harden concrete while maintaining better workability of the fresh concrete. However, the concrete strength and durability properties are affected differently by different types and dosages of the water reducing admixtures and superplasticizers. Based on the published literatures, this paper comprehensively reviews and analyzes this problem. Different types of the concretes, including ordinary Portland cement concrete, ordinary Portland cement concrete containing pozzolan, fly ash and ground granulated blast furnace slag, calcium sulfoaluminate cement concrete, ferrite aluminate cement concrete, recycled aggregates concrete, lightweight aggregate concrete, self-compacting concrete and ultra-high performance concrete, are considered to discuss the influence of types and dosages of the water reducing admixtures and superplasticizers on their strengths. Water absorption, frost resistance and permeability resistance of the concrete are mainly reviewed to discuss this influence on the durability properties of the concrete. Then, some suggestions on the application of the water reducing admixtures and superplasticizers in reinforced concrete structures and projects are proposed.</p

    Stable nontrivial Z2 topology in ultrathin Bi (111) films: a first-principles study

    Full text link
    Recently, there have been intense efforts in searching for new topological insulator (TI) materials. Based on first-principles calculations, we find that all the ultrathin Bi (111) films are characterized by a nontrivial Z2 number independent of the film thickness, without the odd-even oscillation of topological triviality as commonly perceived. The stable nontrivial Z2 topology is retained by the concurrent band gap inversions at multiple time-reversal-invariant k-points and associated with the intermediate inter-bilayer coupling of the multi-bilayer Bi film. Our calculations further indicate that the presence of metallic surface states in thick Bi(111) films can be effectively removed by surface adsorption.Comment: 5 pages, 3 figure

    A proteomic approach to analyzing responses of Arabidopsis thaliana root cells to different gravitational conditions using an agravitropic mutant, pin2 and its wild type

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Root gravitropsim has been proposed to require the coordinated, redistribution of the plant signaling molecule auxin within the root meristem, but the underlying molecular mechanisms are still unknown. PIN proteins are membrane transporters that mediate the efflux of auxin from cells. The PIN2 is important for the basipetal transport of auxin in roots and plays a critical role in the transmission of gravity signals perceived in the root cap to the root elongation zone. The loss of function <it>pin2 </it>mutant exhibits a gravity-insensitive root growth phenotype. By comparing the proteomes of wild type and the <it>pin2 </it>mutant root tips under different gravitational conditions, we hope to identify proteins involved in the gravity-related signal transduction.</p> <p>Results</p> <p>To identify novel proteins involved in the gravity signal transduction pathway we have carried out a comparative proteomic analysis of Arabidopsis <it>pin2 </it>mutant and wild type (WT) roots subjected to different gravitational conditions. These conditions included horizontal (H) and vertical (V) clinorotation, hypergravity (G) and the stationary control (S). Analysis of silver-stained two-dimensional SDS-PAGE gels revealed 28 protein spots that showed significant expression changes in altered gravity (H or G) compared to control roots (V and S). Whereas the majority of these proteins exhibited similar expression patterns in WT and <it>pin2 </it>roots, a significant number displayed different patterns of response between WT and <it>pin2 </it>roots. The latter group included 11 protein spots in the H samples and two protein spots in the G samples that exhibited an altered expression exclusively in WT but not in <it>pin2 </it>roots. One of these proteins was identified as annexin2, which was induced in the root cap columella cells under altered gravitational conditions.</p> <p>Conclusions</p> <p>The most interesting observation in this study is that distinctly different patterns of protein expression were found in WT and <it>pin</it>2 mutant roots subjected to altered gravity conditions. The data also demonstrate that PIN2 mutation not only affects the basipetal transport of auxin to the elongation zone, but also results in an altered expression of proteins in the root columella.</p

    Global dynamic scaling relations of HI-rich ultra-diffuse galaxies

    Full text link
    The baryonic Tully-Fisher relation (BTFR), which connects the baryonic mass of galaxies with their circular velocities, has been validated across a wide range of galaxies, from dwarf galaxies to massive galaxies. Recent studies have found that several ultra-diffuse galaxies (UDGs) deviate significantly from the BTFR, indicating a galaxy population with abnormal dynamical properties. However, such studies were still confined within a small sample size. In this study, we used the 100% complete Arecibo Legacy Fast Arecibo L-band Feed Array (ALFALFA) to investigate the BTFR of 88 HI-rich UDGs (HUDGs), which is the largest UDG sample with dynamical information. We found that the HUDGs form a continuous distribution in the BTFR diagram, with high-velocity galaxies consistent with normal dwarf galaxies at 1 σ\sigma level, and low-velocity galaxies deviating from the BTFR, in line with that reported in the literature. We point out that the observed deviation may be subject to various selection effects or systemic biases. Nevertheless, we found that the significance of the deviation of HUDGs from the BTFR and TFR are different, i.e., they either deviate from the BTFR or from the TFR. Our result indicates that a high-gas fraction may play an important role in explaining the deviation of HUDGs from BTFR.Comment: 12 pages, 9 figures, 1 table, accepted for publication in ApJ
    corecore