57,814 research outputs found

    Projector operators for the no-core shell model

    Get PDF
    Projection operators for the use within ab initio no-core shell model, are suggested.Comment: 3 page

    Localization of Relative-Position of Two Atoms Induced by Spontaneous Emission

    Full text link
    We revisit the back-action of emitted photons on the motion of the relative position of two cold atoms. We show that photon recoil resulting from the spontaneous emission can induce the localization of the relative position of the two atoms through the entanglement between the spatial motion of individual atoms and their emitted photons. The result provides a more realistic model for the analysis of the environment-induced localization of a macroscopic object.Comment: 8 pages and 4 figure

    Spin singlet pairing in the superconducting state of NaxCoO2\cdot1.3H2O: evidence from a ^{59}Co Knight shift in a single crystal

    Get PDF
    We report a ^{59}Co Knight shift measurement in a single crystal of the cobalt oxide superconductor Na_{x}CoO_2\cdot1.3H_2O (T_c=4.25 K). We find that the shift due to the spin susceptibility, K^s, is substantially large and anisotropic, with the spin shift along the a-axis K^s_a being two times that along the c-axis K^s_c. The shift decreases with decreasing temperature (T) down to T\sim100 K, then becomes a constant until superconductivity sets in. Both K^s_a and K^s_c decrease below T_c. Our results indicate unambiguously that the electron pairing in the superconducting state is in the spin singlet form.Comment: 4 pages, 5 figure

    Large-basis shell-model calculations for p-shell nuclei

    Get PDF
    Results of large-basis shell-model calculations for nuclei with A=7-11 are presented. The effective interactions used in the study were derived microscopically from the Reid93 potential and take into account the Coulomb potential as well as the charge dependence of T=1 partial waves. For A=7, a 6ℏΩ6\hbar\Omega model space was used, while for the rest of the studied nuclides, the calculations were performed in a 4ℏΩ4\hbar\Omega model space. It is demonstrated that the shell model combined with microscopic effective interactions derived from modern nucleon-nucleon potentials is capable of providing good agreement with the experimental properties of the ground state as well as with those of the low-lying excited states.Comment: 17 pages. REVTEX. 16 PostScript figure

    SUMO Modification Stabilizes Enterovirus 71 Polymerase 3D To Facilitate Viral Replication.

    Get PDF
    Accumulating evidence suggests that viruses hijack cellular proteins to circumvent the host immune system. Ubiquitination and SUMOylation are extensively studied posttranslational modifications (PTMs) that play critical roles in diverse biological processes. Cross talk between ubiquitination and SUMOylation of both host and viral proteins has been reported to result in distinct functional consequences. Enterovirus 71 (EV71), an RNA virus belonging to the family Picornaviridae, is a common cause of hand, foot, and mouth disease. Little is known concerning how host PTM systems interact with enteroviruses. Here, we demonstrate that the 3D protein, an RNA-dependent RNA polymerase (RdRp) of EV71, is modified by small ubiquitin-like modifier 1 (SUMO-1) both during infection and in vitro Residues K159 and L150/D151/L152 were responsible for 3D SUMOylation as determined by bioinformatics prediction combined with site-directed mutagenesis. Also, primer-dependent polymerase assays indicated that mutation of SUMOylation sites impaired 3D polymerase activity and virus replication. Moreover, 3D is ubiquitinated in a SUMO-dependent manner, and SUMOylation is crucial for 3D stability, which may be due to the interplay between the two PTMs. Importantly, increasing the level of SUMO-1 in EV71-infected cells augmented the SUMOylation and ubiquitination levels of 3D, leading to enhanced replication of EV71. These results together suggested that SUMO and ubiquitin cooperatively regulated EV71 infection, either by SUMO-ubiquitin hybrid chains or by ubiquitin conjugating to the exposed lysine residue through SUMOylation. Our study provides new insight into how a virus utilizes cellular pathways to facilitate its replication. IMPORTANCE: Infection with enterovirus 71 (EV71) often causes neurological diseases in children, and EV71 is responsible for the majority of fatalities. Based on a better understanding of interplay between virus and host cell, antiviral drugs against enteroviruses may be developed. As a dynamic cellular process of posttranslational modification, SUMOylation regulates global cellular protein localization, interaction, stability, and enzymatic activity. However, little is known concerning how SUMOylation directly influences virus replication by targeting viral polymerase. Here, we found that EV71 polymerase 3D was SUMOylated during EV71 infection and in vitro Moreover, the SUMOylation sites were determined, and in vitro polymerase assays indicated that mutations at SUMOylation sites could impair polymerase synthesis. Importantly, 3D is ubiquitinated in a SUMOylation-dependent manner that enhances the stability of the viral polymerase. Our findings indicate that the two modifications likely cooperatively enhance virus replication. Our study may offer a new therapeutic strategy against virus replication
    • …
    corecore