772 research outputs found

    Cyclic movement and chain resolution in Swahili relative clauses

    Get PDF
    Swahili relative clauses have three different constructions, characterized by different linear positions of a relative marker. The relative marker follows C, T and the verbal complex in each case. While some previous analyses propose construction-specific operations such as T to C or V to C movement in amba-less relatives, this study shows that the distribution of the relative marker can in fact be derived from a set of independently motivated assumptions without substantial ad-hoc proposals. I argue that the relative marker is an operator that undergoes cyclic A\u27 movement to Spec,CP, and its various linear position results from Landau (2006)’s chain resolution algorithm conditioned by a disyllabic minimality requirement of words in Swahili (Park 1997; Scott 2015)

    Understanding Data Augmentation from a Robustness Perspective

    Full text link
    In the realm of visual recognition, data augmentation stands out as a pivotal technique to amplify model robustness. Yet, a considerable number of existing methodologies lean heavily on heuristic foundations, rendering their intrinsic mechanisms ambiguous. This manuscript takes both a theoretical and empirical approach to understanding the phenomenon. Theoretically, we frame the discourse around data augmentation within game theory's constructs. Venturing deeper, our empirical evaluations dissect the intricate mechanisms of emblematic data augmentation strategies, illuminating that these techniques primarily stimulate mid- and high-order game interactions. Beyond the foundational exploration, our experiments span multiple datasets and diverse augmentation techniques, underscoring the universal applicability of our findings. Recognizing the vast array of robustness metrics with intricate correlations, we unveil a streamlined proxy. This proxy not only simplifies robustness assessment but also offers invaluable insights, shedding light on the inherent dynamics of model game interactions and their relation to overarching system robustness. These insights provide a novel lens through which we can re-evaluate model safety and robustness in visual recognition tasks.Comment: Not published yet. arXiv admin note: text overlap with arXiv:2212.0405

    Random Entity Quantization for Parameter-Efficient Compositional Knowledge Graph Representation

    Full text link
    Representation Learning on Knowledge Graphs (KGs) is essential for downstream tasks. The dominant approach, KG Embedding (KGE), represents entities with independent vectors and faces the scalability challenge. Recent studies propose an alternative way for parameter efficiency, which represents entities by composing entity-corresponding codewords matched from predefined small-scale codebooks. We refer to the process of obtaining corresponding codewords of each entity as entity quantization, for which previous works have designed complicated strategies. Surprisingly, this paper shows that simple random entity quantization can achieve similar results to current strategies. We analyze this phenomenon and reveal that entity codes, the quantization outcomes for expressing entities, have higher entropy at the code level and Jaccard distance at the codeword level under random entity quantization. Therefore, different entities become more easily distinguished, facilitating effective KG representation. The above results show that current quantization strategies are not critical for KG representation, and there is still room for improvement in entity distinguishability beyond current strategies. The code to reproduce our results is available at https://github.com/JiaangL/RandomQuantization.Comment: Accepted to EMNLP 202

    RealCustom: Narrowing Real Text Word for Real-Time Open-Domain Text-to-Image Customization

    Full text link
    Text-to-image customization, which aims to synthesize text-driven images for the given subjects, has recently revolutionized content creation. Existing works follow the pseudo-word paradigm, i.e., represent the given subjects as pseudo-words and then compose them with the given text. However, the inherent entangled influence scope of pseudo-words with the given text results in a dual-optimum paradox, i.e., the similarity of the given subjects and the controllability of the given text could not be optimal simultaneously. We present RealCustom that, for the first time, disentangles similarity from controllability by precisely limiting subject influence to relevant parts only, achieved by gradually narrowing real text word from its general connotation to the specific subject and using its cross-attention to distinguish relevance. Specifically, RealCustom introduces a novel "train-inference" decoupled framework: (1) during training, RealCustom learns general alignment between visual conditions to original textual conditions by a novel adaptive scoring module to adaptively modulate influence quantity; (2) during inference, a novel adaptive mask guidance strategy is proposed to iteratively update the influence scope and influence quantity of the given subjects to gradually narrow the generation of the real text word. Comprehensive experiments demonstrate the superior real-time customization ability of RealCustom in the open domain, achieving both unprecedented similarity of the given subjects and controllability of the given text for the first time. The project page is https://corleone-huang.github.io/realcustom/.Comment: Accepted by CVPR202

    Improving Top- N

    Get PDF
    Recommender systems become increasingly significant in solving the information explosion problem. Data sparse is a main challenge in this area. Massive unrated items constitute missing data with only a few observed ratings. Most studies consider missing data as unknown information and only use observed data to learn models and generate recommendations. However, data are missing not at random. Part of missing data is due to the fact that users choose not to rate them. This part of missing data is negative examples of user preferences. Utilizing this information is expected to leverage the performance of recommendation algorithms. Unfortunately, negative examples are mixed with unlabeled positive examples in missing data, and they are hard to be distinguished. In this paper, we propose three schemes to utilize the negative examples in missing data. The schemes are then adapted with SVD++, which is a state-of-the-art matrix factorization recommendation approach, to generate recommendations. Experimental results on two real datasets show that our proposed approaches gain better top-N performance than the baseline ones on both accuracy and diversity
    • …
    corecore