19 research outputs found
Huntingtin Interacting Proteins Are Genetic Modifiers of Neurodegeneration
Huntington's disease (HD) is a fatal neurodegenerative condition caused by expansion of the polyglutamine tract in the huntingtin (Htt) protein. Neuronal toxicity in HD is thought to be, at least in part, a consequence of protein interactions involving mutant Htt. We therefore hypothesized that genetic modifiers of HD neurodegeneration should be enriched among Htt protein interactors. To test this idea, we identified a comprehensive set of Htt interactors using two complementary approaches: high-throughput yeast two-hybrid screening and affinity pull down followed by mass spectrometry. This effort led to the identification of 234 high-confidence Htt-associated proteins, 104 of which were found with the yeast method and 130 with the pull downs. We then tested an arbitrary set of 60 genes encoding interacting proteins for their ability to behave as genetic modifiers of neurodegeneration in a Drosophila model of HD. This high-content validation assay showed that 27 of 60 orthologs tested were high-confidence genetic modifiers, as modification was observed with more than one allele. The 45% hit rate for genetic modifiers seen among the interactors is an order of magnitude higher than the 1%ā4% typically observed in unbiased genetic screens. Genetic modifiers were similarly represented among proteins discovered using yeast two-hybrid and pull-down/mass spectrometry methods, supporting the notion that these complementary technologies are equally useful in identifying biologically relevant proteins. Interacting proteins confirmed as modifiers of the neurodegeneration phenotype represent a diverse array of biological functions, including synaptic transmission, cytoskeletal organization, signal transduction, and transcription. Among the modifiers were 17 loss-of-function suppressors of neurodegeneration, which can be considered potential targets for therapeutic intervention. Finally, we show that seven interacting proteins from among 11 tested were able to co-immunoprecipitate with full-length Htt from mouse brain. These studies demonstrate that high-throughput screening for protein interactions combined with genetic validation in a model organism is a powerful approach for identifying novel candidate modifiers of polyglutamine toxicity
Discharge Coefficient of Rectangular Short-Crested Weir with Varying Slope Coefficients
Rectangular short-crested weirs are widely used for simple structure and high discharge capacity. As one of the most important and influential factors of discharge capacity, side slope can improve the hydraulic characteristics of weirs at special conditions. In order to systemically study the effects of upstream and downstream slope coefficients S1 and S2 on overflow discharge coefficient in a rectangular short-crested weir the Volume of Fluid (VOF) method and the Renormalization Group (RNG) Īŗ-Īµ turbulence model are used. In this study, the slope coefficient ranges from V to 3H:1V and each model corresponds to five total energy heads of H0 ranging from 8.0 to 24.0 cm. Comparisons of discharge coefficients and free surface profiles between simulated and laboratory results display a good agreement. The simulated results show that the difference of discharge coefficients will decrease with upstream slopes and increase with downstream slopes as H0 increases. For a given H0, the discharge coefficient has a convex parabolic relation with S1 and a piecewise linearity relation with S2. The maximum discharge coefficient is always obtained at S2 = 0.8. There exists a difference between upstream and downstream slope coefficients in the influence range of free surface curvatures. Furthermore, a proposed discharge coefficient equation by nonlinear regression is a function of upstream and downstream slope coefficients
Effect analysis of burial depth on seismic dynamic response of metro station structure
In this article, based on the nonlinear elastic-plastic finite element model for metro station, considering the structure-soil dynamic interaction, the influence laws of the burial depth on the dynamic response and failure mode of the metro station structure under near and far-field earthquakes are studied. We found that the influence of burial depth on the deformation of the metro station may be omitted after a specific value of the burial depth. With the increasing of the burial depth, the acceleration dynamic amplification factors of the metro station structure decreses. At last, indoor shaking table test for metro station was done, through which we determined the position of initial failure and the failure mode of the metro station structure under earthquake
Structural Basis for Inhibiting Porcine Epidemic Diarrhea Virus Replication with the 3C-Like Protease Inhibitor GC376
Porcine epidemic diarrhea virus (PEDV), being highly virulent and contagious in piglets, has caused significant damage to the pork industries of many countries worldwide. There are no commercial drugs targeting coronaviruses (CoVs), and few studies on anti-PEDV inhibitors. The coronavirus 3C-like protease (3CLpro) has a conserved structure and catalytic mechanism and plays a key role during viral polyprotein processing, thus serving as an appealing antiviral drug target. Here, we report the anti-PEDV effect of the broad-spectrum inhibitor GC376 (targeting 3Cpro or 3CLpro of viruses in the picornavirus-like supercluster). GC376 was highly effective against the PEDV 3CLpro and exerted similar inhibitory effects on two PEDV strains. Furthermore, the structure of the PEDV 3CLpro in complex with GC376 was determined at 1.65 Ć
. We elucidated structural details and analyzed the differences between GC376 binding with the PEDV 3CLpro and GC376 binding with the transmissible gastroenteritis virus (TGEV) 3CLpro. Finally, we explored the substrate specificity of PEDV 3CLpro at the P2 site and analyzed the effects of Leu group modification in GC376 on inhibiting PEDV infection. This study helps us to understand better the PEDV 3CLpro substrate specificity, providing information on the optimization of GC376 for development as an antiviral therapeutic against coronaviruses
Elevated urine albumin-to-creatinine ratio increases the risk of new-onset heart failure in patients with type 2 diabetes
Abstract Background Although albuminuria has been linked to heart failure in the general population, the relationship between urine albumin-to-creatinine ratio (uACR) and heart failure in type 2 diabetes patients is not well understood. We aimed to investigate the relationship between uACR and new-onset heart failure (HF) in type 2 diabetics. Methods We included 9287 Chinese participants with type 2 diabetes (T2D) but no heart failure (HF) who were assessed with uACR between 2014 and 2016. The participants were divided into three groups based on their baseline uACR: normal (<ā3Ā mg/mmol), microalbuminuria (3ā30Ā mg/mmol), and macroalbuminuria (ā„ā30Ā mg/mmol). The relationship between uACR and new-onset HF was studied using Cox proportional hazard models and restricted cubic spline. The area under the receiver operating characteristic curve (AUC), net reclassification improvement (NRI), and integrated discrimination improvement (IDI) were used to see if incorporating uACR into existing models could improve performance. Results 216 new-onset HF cases (2.33%) were recorded after a median follow-up of 4.05Ā years. When compared to normal uACR, elevated uACR was associated with a progressively increased risk of new-onset HF, ranging from microalbuminuria (adjusted HR, 2.21; 95% CI 1.59ā3.06) to macroalbuminuria (adjusted HR, 6.02; 95% CI 4.11ā8.80), and 1 standard deviation (SD) in ln (uACR) (adjusted HR, 1.89; 95% CI 1.68ā2.13). The results were consistent across sex, estimated glomerular filtration rate, systolic blood pressure, and glycosylated hemoglobin subgroups. The addition of uACR to established HF risk models improved the HF risk prediction efficacy. Conclusions Increasing uACR, even below the normal range, is an independent risk factor for new-onset HF in a type 2 diabetic population. Furthermore, uACR may improve HF risk prediction in community-based T2D patients
The N-Terminal Domain of Spike Protein Is Not the Enteric Tropism Determinant for Transmissible Gastroenteritis Virus in Piglets
Transmissible gastroenteritis virus (TGEV) is the etiologic agent of transmissible gastroenteritis in pigs, and the N-terminal domain of TGEV spike protein is generally recognized as both the virulence determinant and enteric tropism determinant. Here, we assembled a full-length infectious cDNA clone of TGEV in a bacterial artificial chromosome. Using a novel approach, the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) systems efficiently and rapidly rescued another recombinant virus with a 224-amino-acid deletion in the N-terminal domain of the TGEV Spike gene (S_NTD224), which is analogous to the N-terminal domain of porcine respiratory coronavirus. S_NTD224 notably affected the TGEV growth kinetics in PK-15 cells but was not essential for recombinant virus survival. In animal experiments with 13 two-day-old piglets, the TGEV recombinant viruses with/without S_NTD224 deletion induced obvious clinical signs and mortality. Together, our results directly demonstrated that S_NTD224 of TGEV mildly influenced TGEV virulence but was not the enteric tropism determinant and provide new insights for the development of a new attenuated vaccine against TGEV. Importantly, the optimized reverse genetics platform used in this study will simplify the construction of mutant infectious clones and help accelerate progress in coronavirus research