9,289 research outputs found

    Thermodynamics of Ion-Containing Polymer Blends and Block Copolymers

    Get PDF
    We develop a theory for the thermodynamics of ion-containing polymer blends and diblock copolymers, taking polyethylene oxide (PEO), polystyrene and lithium salts as an example. We account for the tight binding of Li^+ ions to the PEO, the preferential solvation energy of anions in the PEO domain, the translational entropy of anions, and the ion-pair equilibrium between EO-complexed Li^+ and anion. Our theory is able to predict many features observed in experiments, particularly the systematic dependence in the effective χ parameter on the size of the anions. Furthermore, comparison with the observed linear dependence in the effective χ on salt concentration yields an upper limit for the binding constant of the ion pair

    Novel thick-foam ferroelectret with engineered voids for energy harvesting applications

    Get PDF
    This work reports a novel thick-foam ferroelectret which is designed and engineered for energy harvesting applications. We fabricated this ferroelectret foam by mixing a chemical blowing agent with a polymer solution, then used heat treatment to activate the agent and create voids in the polymer foam. The dimensions of the foam, the density and size of voids can be well controlled in the fabrication process. Therefore, this ferroelectret can be engineered into optimized structure for energy harvesting applications

    Formation and Stability of Cellular Carbon Foam Structures:An {\em Ab Initio} Study

    Full text link
    We use ab initio density functional calculations to study the formation and structural as well as thermal stability of cellular foam-like carbon nanostructures. These systems with a mixed sp2/sp3sp^2/sp^3 bonding character may be viewed as bundles of carbon nanotubes fused to a rigid contiguous 3D honeycomb structure that can be compressed more easily by reducing the symmetry of the honeycombs. The foam may accommodate the same type of defects as graphene, and its surface may be be stabilized by terminating caps. We postulate that the foam may form under non-equilibrium conditions near grain boundaries of a carbon-saturated metal surface

    Many-body Green's function theory of ferromagnetic Heisenberg systems with single-ion anisotropies in more than one direction

    Full text link
    The behaviour of ferromagnetic systems with single-ion anisotropies in more than one direction is investigated with many-body Green's function theory generalizing earlier work with uniaxial anisotropies only. It turns out to be of advantage to construct Green's functions in terms of the spin operators S^x, S^y and S^z, instead of the commonly used S^+,S^- and S^z operators. The exchange energy terms are decoupled by RPA and the single-ion anisotropy terms by a generalization of the Anderson-Callen decoupling. We stress that in the derivation of the formalism none of the three spatial axes is special, so that one is always able to select a reference direction along which a magnetization component is not zero. Analytical expressions are obtained for all three components of the magnetization and the expectation values , and for any spin quantum number S. The formalism considers both in-plane and out-of-plane anisotropies. Numerical calculations illustrate the behaviour of the magnetization for 3-dimensional and 2-dimensional systems for various parameters. In the 2-dimensional case, the magnetic dipole-dipole coupling is included, and a comparison is made between in-plane and out-of-plane anisotropies.Comment: 16 pages, 8 figures, missing figures adde

    Switchable opening and closing of a liquid marble via ultrasonic levitation

    Get PDF
    Liquid marbles have promising applications in the field of microreactors, where the opening and closing of their surfaces plays a central role. We have levitated liquid water marbles using an acoustic levitator and, thereby, achieved the manipulation of the particle shell in a controlled manner. Upon increasing the sound intensity, the stable levitated liquid marble changes from a quasi-sphere to a flattened ellipsoid. Interestingly, a cavity on the particle shell can be produced on the polar areas, which can be completely healed when decreasing the sound intensity, allowing it to serve as a microreactor. The integral of the acoustic radiation pressure on the part of the particle surface protruding into air is responsible for particle migration from the center of the liquid marble to the edge. Our results demonstrate that the opening and closing of the liquid marble particle shell can be conveniently achieved via acoustic levitation, opening up a new possibility to manipulate liquid marbles coated with non-ferromagnetic particles

    Accuracy of density functionals for molecular electronics: the Anderson junction

    Full text link
    The exact ground-state exchange-correlation functional of Kohn-Sham density functional theory yields the exact transmission through an Anderson junction at zero bias and temperature. The exact impurity charge susceptibility is used to construct the exact exchange-correlation potential. We analyze the successes and limitations of various types of approximations, including smooth and discontinuous functionals of the occupation, as well as symmetry-broken approaches.Comment: 6 pages, 5 figures, submitted to Phys. Rev.

    Determination of Dark Matter Halo Mass from Dynamics of Satellite Galaxies

    Full text link
    We show that the mass of a dark matter halo can be inferred from the dynamical status of its satellite galaxies. Using 9 dark-matter simulations of halos like the Milky Way (MW), we find that the present-day substructures in each halo follow a characteristic distribution in the phase space of orbital binding energy and angular momentum, and that this distribution is similar from halo to halo but has an intrinsic dependence on the halo formation history. We construct this distribution directly from the simulations for a specific halo and extend the result to halos of similar formation history but different masses by scaling. The mass of an observed halo can then be estimated by maximizing the likelihood in comparing the measured kinematic parameters of its satellite galaxies with these distributions. We test the validity and accuracy of this method with mock samples taken from the simulations. Using the positions, radial velocities, and proper motions of 9 tracers and assuming observational uncertainties comparable to those of MW satellite galaxies, we find that the halo mass can be recovered to within ∼\sim40%. The accuracy can be improved to within ∼\sim25% if 30 tracers are used. However, the dependence of the phase-space distribution on the halo formation history sets a minimum uncertainty of ∼\sim20% that cannot be reduced by using more tracers. We believe that this minimum uncertainty also applies to any mass determination for a halo when the phase space information of other kinematic tracers is used.Comment: Accepted for publication in ApJ, 18 pages, 13 figure
    • …
    corecore