1 research outputs found

    HDAC5 inhibition attenuates ventricular remodeling and cardiac dysfunction

    No full text
    Abstract Background This study aimed to investigate the role of histone deacetylase 5 (HDAC5) in ventricular remodeling and explore the therapeutic potential of the HDAC5 inhibitor LMK235. Methods A transverse aortic constriction (TAC) mouse model and angiotensin II (Ang II)-treated H9C2 cells were used to evaluate the effects of HDAC5 inhibition with LMK235 on ventricular remodeling and cardiac dysfunction. Additionally, the involvement of the extracellular signal-regulated kinase (ERK)/early growth response protein 1 (EGR1) signaling pathway in regulating myocyte enhancer factor 2 A (MEF2A) expression was assessed. Results HDAC5 was upregulated in TAC mice and Ang II-treated H9C2 cells, suggesting its involvement in ventricular remodeling and cardiac dysfunction. LMK235 treatment significantly improved cardiac function in TAC mice and attenuated TAC-induced ventricular remodeling and Ang II-induced H9C2 cell hypertrophy. Mechanically, HDAC5 inhibition activated the ERK/EGR1 signaling pathway. Conclusions Our findings demonstrate that HDAC5 may suppress the activation of ERK/EGR1 signaling to regulate MEF2A expression and therefore participate in cardiac pathophysiology
    corecore