3 research outputs found

    IST Austria Thesis

    Get PDF
    The first part of the thesis considers the computational aspects of the homotopy groups πd(X) of a topological space X. It is well known that there is no algorithm to decide whether the fundamental group π1(X) of a given finite simplicial complex X is trivial. On the other hand, there are several algorithms that, given a finite simplicial complex X that is simply connected (i.e., with π1(X) trivial), compute the higher homotopy group πd(X) for any given d ≥ 2. However, these algorithms come with a caveat: They compute the isomorphism type of πd(X), d ≥ 2 as an abstract finitely generated abelian group given by generators and relations, but they work with very implicit representations of the elements of πd(X). We present an algorithm that, given a simply connected space X, computes πd(X) and represents its elements as simplicial maps from suitable triangulations of the d-sphere Sd to X. For fixed d, the algorithm runs in time exponential in size(X), the number of simplices of X. Moreover, we prove that this is optimal: For every fixed d ≥ 2, we construct a family of simply connected spaces X such that for any simplicial map representing a generator of πd(X), the size of the triangulation of S d on which the map is defined, is exponential in size(X). In the second part of the thesis, we prove that the following question is algorithmically undecidable for d < ⌊3(k+1)/2⌋, k ≥ 5 and (k, d) ̸= (5, 7), which covers essentially everything outside the meta-stable range: Given a finite simplicial complex K of dimension k, decide whether there exists a piecewise-linear (i.e., linear on an arbitrarily fine subdivision of K) embedding f : K ↪→ Rd of K into a d-dimensional Euclidean space

    Computing simplicial representatives of homotopy group elements

    Get PDF
    A central problem of algebraic topology is to understand the homotopy groups πd(X)\pi_d(X) of a topological space XX. For the computational version of the problem, it is well known that there is no algorithm to decide whether the fundamental group π1(X)\pi_1(X) of a given finite simplicial complex XX is trivial. On the other hand, there are several algorithms that, given a finite simplicial complex XX that is simply connected (i.e., with π1(X)\pi_1(X) trivial), compute the higher homotopy group πd(X)\pi_d(X) for any given d≥2d\geq 2. %The first such algorithm was given by Brown, and more recently, \v{C}adek et al. However, these algorithms come with a caveat: They compute the isomorphism type of πd(X)\pi_d(X), d≥2d\geq 2 as an \emph{abstract} finitely generated abelian group given by generators and relations, but they work with very implicit representations of the elements of πd(X)\pi_d(X). Converting elements of this abstract group into explicit geometric maps from the dd-dimensional sphere SdS^d to XX has been one of the main unsolved problems in the emerging field of computational homotopy theory. Here we present an algorithm that, given a~simply connected space XX, computes πd(X)\pi_d(X) and represents its elements as simplicial maps from a suitable triangulation of the dd-sphere SdS^d to XX. For fixed dd, the algorithm runs in time exponential in size(X)size(X), the number of simplices of XX. Moreover, we prove that this is optimal: For every fixed d≥2d\geq 2, we construct a family of simply connected spaces XX such that for any simplicial map representing a generator of πd(X)\pi_d(X), the size of the triangulation of SdS^d on which the map is defined, is exponential in size(X)size(X)

    Embeddability of simplicial complexes is undecidable

    No full text
    We consider the following decision problem EMBEDk→d in computational topology (where k ≤ d are fixed positive integers): Given a finite simplicial complex K of dimension k, does there exist a (piecewise-linear) embedding of K into ℝd? The special case EMBED1→2 is graph planarity, which is decidable in linear time, as shown by Hopcroft and Tarjan. In higher dimensions, EMBED2→3 and EMBED3→3 are known to be decidable (as well as NP-hard), and recent results of Čadek et al. in computational homotopy theory, in combination with the classical Haefliger–Weber theorem in geometric topology, imply that EMBEDk→d can be solved in polynomial time for any fixed pair (k, d) of dimensions in the so-called metastable range . Here, by contrast, we prove that EMBEDk→d is algorithmically undecidable for almost all pairs of dimensions outside the metastable range, namely for . This almost completely resolves the decidability vs. undecidability of EMBEDk→d in higher dimensions and establishes a sharp dichotomy between polynomial-time solvability and undecidability. Our result complements (and in a wide range of dimensions strengthens) earlier results of Matoušek, Tancer, and the second author, who showed that EMBEDk→d is undecidable for 4 ≤ k ϵ {d – 1, d}, and NP-hard for all remaining pairs (k, d) outside the metastable range and satisfying d ≥ 4
    corecore