33 research outputs found

    Crossover of Level Statistics between Strong and Weak Localization in Two Dimensions

    Full text link
    We investigate numerically the statistical properties of spectra of two-dimensional disordered systems by using the exact diagonalization and decimation method applied to the Anderson model. Statistics of spacings calculated for system sizes up to 1024 ×\times 1024 lattice sites exhibits a crossover between Wigner and Poisson distributions. We perform a self-contained finite-size scaling analysis to find a single-valued one-parameter function γ(L/ξ)\gamma (L/\xi) which governs the crossover. The scaling parameter ξ(W)\xi(W) is deduced and compared with the localization length. γ(L/ξ)\gamma ( L/\xi) does {\em not} show critical behavior and has two asymptotic regimes corresponding to weakly and strongly localized states.Comment: 4 pages in revtex, 3 postscript figure

    Finite-size scaling from self-consistent theory of localization

    Full text link
    Accepting validity of self-consistent theory of localization by Vollhardt and Woelfle, we derive the finite-size scaling procedure used for studies of the critical behavior in d-dimensional case and based on the use of auxiliary quasi-1D systems. The obtained scaling functions for d=2 and d=3 are in good agreement with numerical results: it signifies the absence of essential contradictions with the Vollhardt and Woelfle theory on the level of raw data. The results \nu=1.3-1.6, usually obtained at d=3 for the critical exponent of the correlation length, are explained by the fact that dependence L+L_0 with L_0>0 (L is the transversal size of the system) is interpreted as L^{1/\nu} with \nu>1. For dimensions d\ge 4, the modified scaling relations are derived; it demonstrates incorrectness of the conventional treatment of data for d=4 and d=5, but establishes the constructive procedure for such a treatment. Consequences for other variants of finite-size scaling are discussed.Comment: Latex, 23 pages, figures included; additional Fig.8 is added with high precision data by Kramer et a

    Critical level spacing distribution of two-dimensional disordered systems with spin-orbit coupling

    Full text link
    The energy level statistics of 2D electrons with spin-orbit scattering are considered near the disorder induced metal-insulator transition. Using the Ando model, the nearest-level-spacing distribution is calculated numerically at the critical point. It is shown that the critical spacing distribution is size independent and has a Poisson-like decay at large spacings as distinct from the Gaussian asymptotic form obtained by the random-matrix theory.Comment: 7 pages REVTeX, 2 uuencoded, gzipped figures; J. Phys. Condensed Matter, in prin

    Asymptotics of Universal Probability of Neighboring Level Spacings at the Anderson Transition

    Full text link
    The nearest-neighbor level spacing distribution is numerically investigated by directly diagonalizing disordered Anderson Hamiltonians for systems of sizes up to 100 x 100 x 100 lattice sites. The scaling behavior of the level statistics is examined for large spacings near the delocalization-localization transition and the correlation length exponent is found. By using high-precision calculations we conjecture a new interpolation of the critical cumulative probability, which has size-independent asymptotic form \ln I(s) \propto -s^{\alpha} with \alpha = 1.0 \pm 0.1.Comment: 5 pages, RevTex, 4 figures, to appear in Physical Review Letter

    Scaling of Level Statistics at the Disorder-Induced Metal-Insulator Transition

    Full text link
    The distribution of energy level separations for lattices of sizes up to 28×\times28×\times28 sites is numerically calculated for the Anderson model. The results show one-parameter scaling. The size-independent universality of the critical level spacing distribution allows to detect with high precision the critical disorder Wc=16.35W_{c}=16.35. The scaling properties yield the critical exponent, ν=1.45±0.08\nu =1.45 \pm 0.08, and the disorder dependence of the correlation length.Comment: 11 pages (RevTex), 3 figures included (tar-compressed and uuencoded using UUFILES), to appear in Phys.Rev. B 51 (Rapid Commun.

    Critical spectral statistics in two-dimensional interacting disordered systems

    Full text link
    The effect of Coulomb and short-range interactions on the spectral properties of two-dimensional disordered systems with two spinless fermions is investigated by numerical scaling techniques. The size independent universality of the critical nearest level-spacing distribution P(s)P(s) allows one to find a delocalization transition at a critical disorder WcW_{\rm c} for any non-zero value of the interaction strength. At the critical point the spacings distribution has a small-ss behavior Pc(s)sP_c(s)\propto s, and a Poisson-like decay at large spacings.Comment: 4 two-column pages, 3 eps figures, RevTeX, new results adde

    Critical Level Statistics in Two-dimensional Disordered Electron Systems

    Full text link
    The level statistics in the two dimensional disordered electron systems in magnetic fields (unitary ensemble) or in the presence of strong spin-orbit scattering (symplectic ensemble) are investigated at the Anderson transition points. The level spacing distribution functions P(s)P(s)'s are found to be independent of the system size or of the type of the potential distribution, suggesting the universality. They behave as s2s^2 in the small ss region in the former case, while s4s^4 rise is seen in the latter.Comment: LaTeX, to be published in J. Phys. Soc. Jpn. (Letter) Nov., Figures will be sent on reques
    corecore